Rhombihexaoctagonal tiling

(Redirected from 4232 symmetry)
Rhombihexaoctagonal tiling
Rhombihexaoctagonal tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration 6.4.8.4
Schläfli symbol rr{8,6} or
Wythoff symbol 6 | 8 2
Coxeter diagram
Symmetry group [8,6], (*862)
Dual Deltoidal hexaoctagonal tiling
Properties Vertex-transitive

In geometry, the rhombihexaoctagonal tiling is a semiregular tiling of the hyperbolic plane. It has Schläfli symbol of rr{8,6}.

Symmetry

edit

The dual tiling, called a deltoidal hexaoctagonal tiling represent the fundamental domains of *4232 symmetry, a half symmetry of [8,6], (*862) as [8,1+,6].

 
edit

From a Wythoff construction there are fourteen hyperbolic uniform tilings that can be based from the regular order-6 octagonal tiling.

Drawing the tiles colored as red on the original faces, yellow at the original vertices, and blue along the original edges, there are 7 forms with full [8,6] symmetry, and 7 with subsymmetry.

Uniform octagonal/hexagonal tilings
Symmetry: [8,6], (*862)
                                         
             
{8,6} t{8,6}
r{8,6} 2t{8,6}=t{6,8} 2r{8,6}={6,8} rr{8,6} tr{8,6}
Uniform duals
                                         
             
V86 V6.16.16 V(6.8)2 V8.12.12 V68 V4.6.4.8 V4.12.16
Alternations
[1+,8,6]
(*466)
[8+,6]
(8*3)
[8,1+,6]
(*4232)
[8,6+]
(6*4)
[8,6,1+]
(*883)
[(8,6,2+)]
(2*43)
[8,6]+
(862)
                                         
     
h{8,6} s{8,6} hr{8,6} s{6,8} h{6,8} hrr{8,6} sr{8,6}
Alternation duals
                                         
 
V(4.6)6 V3.3.8.3.8.3 V(3.4.4.4)2 V3.4.3.4.3.6 V(3.8)8 V3.45 V3.3.6.3.8

See also

edit

References

edit
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
edit