AM1* is a semiempirical molecular orbital technique in computational chemistry. The method was developed by Timothy Clark and co-workers (in Computer-Chemie-Centrum, Universität Erlangen-Nürnberg) and published first in 2003.[1][2][3]

Indeed, AM1* is an extension of AM1[4] molecular orbital theory and uses AM1 parameters and theory unchanged for the elements H, C, N, O and F. But, other elements have been parameterized using an additional set of d-orbitals in the basis set and with two-center core–core parameters, rather than the Gaussian functions used to modify the core–core potential in AM1. Additionally, for transition metal-hydrogen interactions, a distance dependent term is used to calculate core-core potentials rather than the constant term.

AM1* parameters are now available for H, C, N, O, F, Al, Si, P, S, Cl, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Br, Zr, Mo, Pd, Ag, I and Au.

AM1* is implemented in VAMP 10.0 [5] and Materials Studio (Accelrys Software Inc.).

References

edit
  1. ^ Winget, P; Horn, AH; Selçuki, C; Martin, B; Clark, T (2003). "AM1* parameters for phosphorus, sulfur and chlorine". J Mol Model. 9 (6): 408–414. doi:10.1007/s00894-003-0156-7. PMID 12955599. S2CID 21887433.
  2. ^ Winget, Paul; Clark, Timothy (2005). "AM1* parameters for aluminum, silicon, titanium and zirconium". J Mol Model. 11 (6): 439–456. doi:10.1007/s00894-005-0236-y. PMID 16133088. S2CID 43692104.
  3. ^ Kayi, H; Clark, T (2007). "AM1* parameters for copper and zinc". J Mol Model. 13 (9): 965–979. doi:10.1007/s00894-007-0214-7. PMID 17569997. S2CID 32057646.
  4. ^ Dewar, Michael J. S.; Zoebisch, Eve G.; Healy, Eamonn F.; Stewart, James J. P. (1985). "Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model". J Am Chem Soc. 107 (13): 3902–3909. doi:10.1021/ja00299a024.
  5. ^ Clark T, Alex A, Beck B, Chandrasekhar J, Gedeck P, Horn AHC, Hutter M, Martin B, Rauhut G, Sauer W, Schindler T, Steinke T (2005) Computer-Chemie-Centrum. Universität Erlangen-Nürnberg, Erlangen