Yttrium aluminium garnet

(Redirected from Al5O12Y3)

Yttrium aluminium garnet (YAG, Y3Al5O12) is a synthetic crystalline material of the garnet group. It is a cubic yttrium aluminium oxide phase, with other examples being YAlO3 (YAP[2]) in a hexagonal or an orthorhombic, perovskite-like form, and the monoclinic Y4Al2O9 (YAM[3]).[4]

Yttrium aluminium garnet
General
Categorysynthetic mineral
Formula
(repeating unit)
Y3Al5O12
Crystal systemCubic
Identification
ColorUsually colorless, but may be pink, red, orange, yellow, green, blue, purple
CleavageNone
FractureConchoidal to uneven
Mohs scale hardness8.5
LusterVitreous to subadamantine
Specific gravity4.5–4.6
Polish lusterVitreous to subadamantine
Optical propertiesSingle refractive
Refractive index1.833±0.010
BirefringenceNone
PleochroismNone
Dispersion0.028
Ultraviolet fluorescenceColorless stones - inert to moderate orange in long wave, inert to weak orange in short wave; blue and pink stones - inert; yellow-green stones - very strong yellow in long and short wave also phosphoresces; green stones - strong red in long wave, weak red in short wave
References[1]

Due to its broad optical transparency,[5] low internal stress, high hardness, chemical and heat resistance, YAG is used for a variety of optics.[6] Its lack of birefringence (unlike sapphire) makes it an interesting material for high-energy/high-power laser systems. Laser damage levels of YAG ranged from 1.1 to 2.2 kJ/cm2 (1064 nm, 10 ns).[7]

YAG, like garnet and sapphire, has no uses as a laser medium when pure. However, after being doped with an appropriate ion, YAG is commonly used as a host material in various solid-state lasers.[8] Rare earth elements such as neodymium and erbium can be doped into YAG as active laser ions, yielding Nd:YAG and Er:YAG lasers, respectively. Cerium-doped YAG (Ce:YAG) is used as a phosphor in cathode ray tubes and white light-emitting diodes, and as a scintillator.

Gemstone YAG

edit

YAG for a period[when?] was used in jewelry as a diamond and other gemstone simulant. Colored variants and their doping elements include:[1] green (chromium), blue (cobalt), red (manganese), yellow (titanium), blue/pink/purple (neodymium, depending on light source), pink, and orange. As faceted gems they are valued (as synthetics) for their clarity, durability, high refractive index and dispersion, and occasionally properties like simulating alexandrite's color-changing property. The critical angle of YAG is 33 degrees. YAG cuts like natural garnet, with polishing being performed with alumina or diamond (50,000 or 100,000 grit) on common polishing laps. YAG has low heat sensitivity.[9]

As a synthetic gemstone YAG has numerous varietal and trade names, as well as a number of misnomers. Synonymous names include: alexite, amamite, circolite, dia-bud, diamite, diamogem, diamonair, diamone, diamonique, diamonite, diamonte, di'yag, geminair, gemonair, kimberly, Linde simulated diamond, nier-gem, regalair, replique, somerset, triamond, YAIG, and yttrium garnet. Production for the gem trade decreased after the introduction of synthetic cubic zirconia; as of 1995 there was little production.[1] Some demand exists as synthetic garnet, and for designs where the very high refractive index of cubic zirconia is not desirable.[citation needed]

Technical-use varieties

edit

Nd:YAG

edit
 
Nd:YAG laser rod 0.5 cm in diameter.

Neodymium-doped YAG (Nd:YAG) was developed in the early 1960s, and the first working Nd:YAG laser was invented in 1964. Neodymium-YAG is the most widely used active laser medium in solid-state lasers, being used for everything from low-power continuous-wave lasers to high-power Q-switched (pulsed) lasers with power levels measured in the kilowatts.[10] The thermal conductivity of Nd:YAG is higher and its fluorescence lifetime is about twice as long as that of Nd:YVO4 crystals, however it is not as efficient and is less stable, requiring more precisely controlled temperatures. The best absorption band of Nd:YAG for pumping the laser is centered at 807.5 nm, and is 1 nm wide.[11]

Most Nd:YAG lasers produce infrared light at a wavelength of 1064 nm. Light at this wavelength is rather dangerous to vision, since it can be focused by the eye's lens onto the retina, but the light is invisible and does not trigger the blink reflex. Nd:YAG lasers can also be used with frequency doubling or frequency tripling crystals, to produce green light with a wavelength of 532 nm or ultraviolet light at 355 nm, respectively.

The dopant concentration in commonly used Nd:YAG crystals usually varies between 0.5 and 1.4 molar percent. Higher dopant concentration is used for pulsed lasers; lower concentration is suitable for continuous-wave lasers. Nd:YAG is pinkish-purple, with lighter-doped rods being less intensely colored than heavier-doped ones. Since its absorption spectrum is narrow, the hue depends on the light under which it is observed.

Nd:Cr:YAG

edit

YAG doped with neodymium and chromium (Nd:Cr:YAG or Nd/Cr:YAG) has absorption characteristics which are superior to Nd:YAG. This is because energy is absorbed by the broad absorption bands of the Cr3+ dopant and then transferred to Nd3+ by dipole-dipole interactions.[12] This material has been suggested for use in solar-pumped lasers, which could form part of a solar power satellite system.[13]

Er:YAG

edit

Erbium-doped YAG (Er:YAG) is an active laser medium lasing at 2940 nm. Its absorption bands suitable for pumping are wide and located between 600 and 800 nm, allowing for efficient flashlamp pumping. The dopant concentration used is high: about 50% of the yttrium atoms are replaced. The Er:YAG laser wavelength couples well into water and body fluids, making this laser especially useful for medicine and dentistry uses; it is used for treatment of tooth enamel and in cosmetic surgery. Er:YAG is used for noninvasive monitoring of blood sugar. The mechanical properties of Er:YAG are essentially the same as Nd:YAG. Er:YAG operates at wavelengths where the threshold for eye damage is relatively high (since the light is absorbed before striking the retina), works well at room temperature, and has high slope efficiency. Er:YAG is pink.[14]

Yb:YAG

edit

Ytterbium-doped YAG (Yb:YAG) is an active laser medium lasing at 1030 nm, with a broad, 18 nm wide absorption band at 940 nm.[15] It is one of the most useful media for high-power diode-pumped solid state lasers. The dopant levels used range between 0.2% and 30% of replaced yttrium atoms. Yb:YAG has very low fractional heating, very high slope efficiency,[16] and no excited-state absorption or up-conversion, high mechanical strength and high thermal conductivity. Yb:YAG can be pumped by reliable InGaAs laser diodes at 940 or 970 nm.

Yb:YAG is a good substitute for 1064 nm Nd:YAG in high-power applications, and its frequency-doubled 515 nm version can replace the 514 nm argon lasers.

Nd:Ce:YAG

edit

Neodymium-cerium double-doped YAG (Nd:Ce:YAG, or Nd,Ce:YAG) is an active laser medium material very similar to Nd:YAG. The added cerium atoms strongly absorb in the ultraviolet region and transfer their energy to the neodymium atoms, increasing the pumping efficiency; the result is lower thermal distortion and higher power output than Nd:YAG at the same pumping level. The lasing wavelength, 1064 nm, is the same as for Nd:YAG. The material has a good resistance to damage caused by UV from the pump source, and low lasing threshold. Usually 1.1–1.4% of Y atoms are replaced with Nd, and 0.05–0.1% with Ce.

Ho:Cr:Tm:YAG

edit

Holmium-chromium-thulium triple-doped YAG (Ho:Cr:Tm:YAG, or Ho,Cr,Tm:YAG) is an active laser medium material with high efficiency. It lases at 2080 nm and can be pumped by a flashlamp or a laser diode.[17] It is widely used in military, medicine, and meteorology. It works well at room temperature, has high slope efficiency, and operates at a wavelength where the threshold for eye damage is relatively high. When pumped by a diode, the 785 nm band for Tm3+ ion can be used.[17] Other major pump bands are located between 400 and 800 nm. The dopant levels used are 0.35 atom.% Ho, 5.8 atom.% Tm, and 1.5 at.% Cr. The rods have green color, imparted by chromium(III).

Tm:YAG

edit

Thulium-doped YAG (Tm:YAG) is an active laser medium that operates between 1930 and 2040 nm. It is suitable for diode pumping. A dual-mode Tm:YAG laser emits two frequencies separated by 1 GHz.

Cr4+:YAG

edit

Chromium (IV)-doped YAG (Cr:YAG) provides a large absorption cross section in the 0.9-1.2 micrometer spectral region, which makes it an attractive choice as a passive Q-switch for Nd-doped lasers. The resulting devices are solid-state, compact and low-cost. Cr:YAG has high damage threshold, good thermal conductivity, good chemical stability, resists ultraviolet radiation, and is easily machinable. It is replacing more traditional Q-switching materials like lithium fluoride and organic dyes. The dopant levels used range between 0.5 and 3 percent (molar). Cr:YAG can be used for passive Q-switching of lasers that operate at wavelengths between 1000 and 1200 nm, such as those based on Nd:YAG, Nd:YLF, Nd:YVO4, and Yb:YAG.

Cr:YAG can be also used as a laser gain medium itself, producing tunable lasers with outputs adjustable between 1350 and 1550 nm. The Cr:YAG laser can generate ultrashort pulses (in the femtoseconds range) when it is pumped at 1064 nm by a Nd:YAG laser.[18]

Cr:YAG has been demonstrated in an application of non-linear optics as a self-pumped phase-conjugate mirror in a Nd:YAG "loop resonator".[citation needed] Such a mirror provides compensation of both phase and polarization aberrations induced into the loop resonator.

Dy:YAG

edit

Dysprosium-doped YAG (Dy:YAG) is a temperature-sensitive phosphor used in temperature measurements.[19] The phosphor is excited by a laser pulse and its temperature-dependent fluorescence is observed. Dy:YAG is sensitive in ranges of 300–1700 K.[20] The phosphor can be applied directly to the measured surface, or to an end of an optical fiber. It has also been studied as a single-phase white emitting phosphor in phosphor-converted white light-emitting diodes.[21]

Sm:YAG

edit

Samarium-doped YAG (Sm:YAG) is a temperature-sensitive phosphor similar to Dy:YAG.

Tb:YAG

edit

Terbium-doped YAG (Tb:YAG) is a phosphor used in cathode ray tubes. It emits at yellow-green color, at 544 nm.

Ce:YAG

edit

Cerium(III)-doped YAG (Ce:YAG or YAG:Ce) is a phosphor, or a scintillator when in pure single-crystal form, with a wide range of uses. It emits yellow light when subjected to blue or ultraviolet light or to x-rays.[22] It is used in white light-emitting diodes as a coating on a high-brightness blue InGaN diode, converting part of the blue light into yellow, which together then appear as white. Such an arrangement gives less than ideal color rendering. The output brightness decreases with increasing temperature, further altering device color output.[citation needed]

Ce:YAG is also used in some mercury-vapor lamps as one of the phosphors, often together with Eu:Y(P,V)O4 (yttrium phosphate-vanadate). It is also used as a phosphor in cathode ray tubes, where it emits green (530 nm) to yellow-green (550 nm) light. When excited by electrons, it has virtually no afterglow (70 ns decay time). It is suitable for use in photomultipliers.

Ce:YAG is used in PET scanners, high-energy gamma radiation and charged particle detectors, and high-resolution imaging screens for gamma, x-rays, beta radiation and ultraviolet radiation.

Ce:YAG can be further doped with gadolinium.

See also

edit

References

edit
  1. ^ a b c Gemological Institute of America, GIA Gem Reference Guide 1995, ISBN 0-87311-019-6
  2. ^ "YAlO
    3
    ; YAP (YAlO
    3
    ht) Crystal Structure"
    . Springer Materials. Retrieved 2019-12-23.
    .
  3. ^ "Y
    4
    Al
    2
    O
    9
    ; YAM (Y
    4
    Al
    2
    O
    9
    rt) Crystal Structure"
    . Springer Materials. Retrieved 2020-01-28.
  4. ^ Sim, S.M.; Keller, K.A.; Mah, T.I. (2000). "Phase formation in yttrium aluminium garnet powders synthesized by chemical methods". Journal of Materials Science. 35 (3): 713–717. Bibcode:2000JMatS..35..713S. doi:10.1023/A:1004709401795. S2CID 92455146.
  5. ^ Franta, Daniel; Mureșan, Mihai-George (2021-12-01). "Wide spectral range optical characterization of yttrium aluminum garnet (YAG) single crystal by the universal dispersion model". Optical Materials Express. 11 (12): 3930. Bibcode:2021OMExp..11.3930F. doi:10.1364/OME.441088. ISSN 2159-3930. S2CID 239534251.
  6. ^ "Custom YAG (Yttrium Aluminium Garnet, Yttrium Aluminium Oxide Y3Al5O12) optics". Knight Optical. Retrieved 2022-03-15.
  7. ^ Do, Binh T.; Smith, Arlee V. (2009-06-20). "Bulk optical damage thresholds for doped and undoped, crystalline and ceramic yttrium aluminum garnet". Applied Optics. 48 (18): 3509–3514. Bibcode:2009ApOpt..48.3509D. doi:10.1364/AO.48.003509. ISSN 0003-6935. PMID 19543361.
  8. ^ Kalisky, Yehoshua (1997). "Hosts for Solid State Luminescent Systems". In Rotman, Stanley R. (ed.). Wide-Gap Luminescent Materials: Theory and Applications: Theory and Applications. Springer Science & Business Media. ISBN 9780792398370.
  9. ^ Rice, Addison. "How to Spot a Fake Diamond: What These 13 Tests Really Mean!". International Gem Society. Retrieved 2021-02-15.
  10. ^ V. Lupei, A. Lupei "Nd:YAG at its 50th anniversary: Still to learn" Journal of Luminescence 2015, doi:10.1016/j.jlumin.2015.04.018
  11. ^ "ND:YAG crystal (neodymium doped yttrium aluminium garnet)". Red Optronics.
  12. ^ Z. J. Kiss and R. J. Pressley (1996). "Crystalline solid lasers". Proceedings of the IEEE. 54 (10): 1236. doi:10.1109/PROC.1966.5112.
  13. ^ Saiki, T; Imasaki, K; Motokoshi, S; Yamanaka, C; Fujita, H; Nakatsuka, M; Izawa, Y (2006). "Disk-type Nd/Cr:YAG ceramic lasers pumped by arc-metal-halide-lamp". Optics Communications. 268 (1): 155. Bibcode:2006OptCo.268..155S. doi:10.1016/j.optcom.2006.07.002.
  14. ^ Lv, Haodong; Bao, Jinxiao; Chao, Luomeng; Song, Xiwen; An, Shengli; Zhou, Fen; Wang, Qingchun; Ruan, Fei; Zhang, Wen; Guo, Wenrong; Zhang, Yonghe (2019). "Development mechanism of Ce-doped red zirconia ceramics prepared by a high-temperature reduction method". Journal of Alloys and Compounds. 797: 931–939. doi:10.1016/j.jallcom.2019.05.216. S2CID 182269171. Retrieved 11 April 2022. Yttrium aluminum garnet (YAG) is an important optical ceramic material, especially when doped with Nd and Er, when it exhibits a specific color. For instance, Er:YAG is pink and Nd:YAG is a light reddish purple
  15. ^ Grant-Jacob, James A.; Beecher, Stephen J.; Parsonage, Tina L.; Hua, Ping; Mackenzie, Jacob I.; Shepherd, David P.; Eason, Robert W. (2016-01-01). "An 115 W Yb:YAG planar waveguide laser fabricated via pulsed laser deposition" (PDF). Optical Materials Express. 6 (1): 91. Bibcode:2016OMExp...6...91G. doi:10.1364/ome.6.000091. ISSN 2159-3930.
  16. ^ Beecher, Stephen J.; Grant-Jacob, James A.; Hua, Ping; Shepherd, David; Eason, Robert W.; Mackenzie, Jacob I. (2016-10-30). "Laser Performance of Yb-doped-Garnet Thin Films Grown by Pulsed Laser Deposition". Lasers Congress 2016 (ASSL, LSC, LAC). Optical Society of America. pp. AM3A.3. doi:10.1364/assl.2016.am3a.3. ISBN 978-1-943580-20-0.
  17. ^ a b Koechner, Walter (2006). Solid-state laser engineering. Springer. p. 49. ISBN 978-0-387-29094-2.
  18. ^ Paschotta, Rüdiger. "Chromium-doped gain media". Encyclopedia of Laser Physics and Technology. RP Photonics. Retrieved April 2, 2011.
  19. ^ Sevic, Dragutin (2021). "Temperature sensing using YAG:Dy single-crystal phosphor". The European Physical Journal D. 75 (2): 56. Bibcode:2021EPJD...75...56S. doi:10.1140/epjd/s10053-021-00068-w. S2CID 234033077. Retrieved 20 April 2023.
  20. ^ Goss, L.P.; Smith, A.A.; Post, M.E. (1989). "Surface thermometry by laser-induced fluorescence". Review of Scientific Instruments. 60 (12): 3702–3706. Bibcode:1989RScI...60.3702G. doi:10.1063/1.1140478.
  21. ^ Carreira, J. F. C. (2017). "YAG:Dy – Based single white light emitting phosphor produced by solution combustion synthesis". Journal of Luminescence. 183: 251–258. Bibcode:2017JLum..183..251C. doi:10.1016/j.jlumin.2016.11.017.
  22. ^ G. Blasse and A. Bril, "A new phosphor for flying-spot cathode-ray tubes for color televisions", Appl. Phys. Lett., 11, 1967, 53-54 doi:10.1063/1.1755025