In mathematics, a group is said to be almost simple if it contains a non-abelian simple group and is contained within the automorphism group of that simple group – that is, if it fits between a (non-abelian) simple group and its automorphism group. In symbols, a group is almost simple if there is a (non-abelian) simple group S such that , where the inclusion of in is the action by conjugation, which is faithful since is has trivial center.[1]

Examples

edit
  • Trivially, non-abelian simple groups and the full group of automorphisms are almost simple. For   or   the symmetric group   is the automorphism group of the simple alternating group   so   is almost simple in this trivial sense.
  • For   there is a proper example, as   sits properly between the simple   and   due to the exceptional outer automorphism of   Two other groups, the Mathieu group   and the projective general linear group   also sit properly between   and  

Properties

edit

The full automorphism group of a non-abelian simple group is a complete group (the conjugation map is an isomorphism to the automorphism group),[2] but proper subgroups of the full automorphism group need not be complete.

Structure

edit

By the Schreier conjecture, now generally accepted as a corollary of the classification of finite simple groups, the outer automorphism group of a finite simple group is a solvable group. Thus a finite almost simple group is an extension of a solvable group by a simple group.

See also

edit

Notes

edit
edit
  1. ^ Dallavolta, F.; Lucchini, A. (1995-11-15). "Generation of Almost Simple Groups". Journal of Algebra. 178 (1): 194–223. doi:10.1006/jabr.1995.1345. ISSN 0021-8693.
  2. ^ Robinson, Derek J. S. (1996), Robinson, Derek J. S. (ed.), "Subnormal Subgroups", A Course in the Theory of Groups, New York, NY: Springer, Corollary 13.5.10, doi:10.1007/978-1-4419-8594-1_13, ISBN 978-1-4419-8594-1, retrieved 2024-11-23