The Appell series F 1 is defined for |x | < 1, |y | < 1 by the double series
F
1
(
a
,
b
1
,
b
2
;
c
;
x
,
y
)
=
∑
m
,
n
=
0
∞
(
a
)
m
+
n
(
b
1
)
m
(
b
2
)
n
(
c
)
m
+
n
m
!
n
!
x
m
y
n
,
{\displaystyle F_{1}(a,b_{1},b_{2};c;x,y)=\sum _{m,n=0}^{\infty }{\frac {(a)_{m+n}(b_{1})_{m}(b_{2})_{n}}{(c)_{m+n}\,m!\,n!}}\,x^{m}y^{n}~,}
where
(
q
)
n
{\displaystyle (q)_{n}}
is the Pochhammer symbol . For other values of x and y the function F 1 can be defined by analytic continuation . It can be shown[ 1] that
F
1
(
a
,
b
1
,
b
2
;
c
;
x
,
y
)
=
∑
r
=
0
∞
(
a
)
r
(
b
1
)
r
(
b
2
)
r
(
c
−
a
)
r
(
c
+
r
−
1
)
r
(
c
)
2
r
r
!
x
r
y
r
2
F
1
(
a
+
r
,
b
1
+
r
;
c
+
2
r
;
x
)
2
F
1
(
a
+
r
,
b
2
+
r
;
c
+
2
r
;
y
)
.
{\displaystyle F_{1}(a,b_{1},b_{2};c;x,y)=\sum _{r=0}^{\infty }{\frac {(a)_{r}(b_{1})_{r}(b_{2})_{r}(c-a)_{r}}{(c+r-1)_{r}(c)_{2r}r!}}\,x^{r}y^{r}{}_{2}F_{1}\left(a+r,b_{1}+r;c+2r;x\right){}_{2}F_{1}\left(a+r,b_{2}+r;c+2r;y\right)~.}
Similarly, the function F 2 is defined for |x | + |y | < 1 by the series
F
2
(
a
,
b
1
,
b
2
;
c
1
,
c
2
;
x
,
y
)
=
∑
m
,
n
=
0
∞
(
a
)
m
+
n
(
b
1
)
m
(
b
2
)
n
(
c
1
)
m
(
c
2
)
n
m
!
n
!
x
m
y
n
{\displaystyle F_{2}(a,b_{1},b_{2};c_{1},c_{2};x,y)=\sum _{m,n=0}^{\infty }{\frac {(a)_{m+n}(b_{1})_{m}(b_{2})_{n}}{(c_{1})_{m}(c_{2})_{n}\,m!\,n!}}\,x^{m}y^{n}}
and it can be shown[ 2] that
F
2
(
a
,
b
1
,
b
2
;
c
1
,
c
2
;
x
,
y
)
=
∑
r
=
0
∞
(
a
)
r
(
b
1
)
r
(
b
2
)
r
(
c
1
)
r
(
c
2
)
r
r
!
x
r
y
r
2
F
1
(
a
+
r
,
b
1
+
r
;
c
1
+
r
;
x
)
2
F
1
(
a
+
r
,
b
2
+
r
;
c
2
+
r
;
y
)
.
{\displaystyle F_{2}(a,b_{1},b_{2};c_{1},c_{2};x,y)=\sum _{r=0}^{\infty }{\frac {(a)_{r}(b_{1})_{r}(b_{2})_{r}}{(c_{1})_{r}(c_{2})_{r}r!}}\,x^{r}y^{r}{}_{2}F_{1}\left(a+r,b_{1}+r;c_{1}+r;x\right){}_{2}F_{1}\left(a+r,b_{2}+r;c_{2}+r;y\right)~.}
Also the function F 3 for |x | < 1, |y | < 1 can be defined by the series
F
3
(
a
1
,
a
2
,
b
1
,
b
2
;
c
;
x
,
y
)
=
∑
m
,
n
=
0
∞
(
a
1
)
m
(
a
2
)
n
(
b
1
)
m
(
b
2
)
n
(
c
)
m
+
n
m
!
n
!
x
m
y
n
,
{\displaystyle F_{3}(a_{1},a_{2},b_{1},b_{2};c;x,y)=\sum _{m,n=0}^{\infty }{\frac {(a_{1})_{m}(a_{2})_{n}(b_{1})_{m}(b_{2})_{n}}{(c)_{m+n}\,m!\,n!}}\,x^{m}y^{n}~,}
and the function F 4 for |x |1 ⁄2 + |y |1 ⁄2 < 1 by the series
F
4
(
a
,
b
;
c
1
,
c
2
;
x
,
y
)
=
∑
m
,
n
=
0
∞
(
a
)
m
+
n
(
b
)
m
+
n
(
c
1
)
m
(
c
2
)
n
m
!
n
!
x
m
y
n
.
{\displaystyle F_{4}(a,b;c_{1},c_{2};x,y)=\sum _{m,n=0}^{\infty }{\frac {(a)_{m+n}(b)_{m+n}}{(c_{1})_{m}(c_{2})_{n}\,m!\,n!}}\,x^{m}y^{n}~.}
Recurrence relations
edit
Like the Gauss hypergeometric series 2 F 1 , the Appell double series entail recurrence relations among contiguous functions. For example, a basic set of such relations for Appell's F 1 is given by:
(
a
−
b
1
−
b
2
)
F
1
(
a
,
b
1
,
b
2
,
c
;
x
,
y
)
−
a
F
1
(
a
+
1
,
b
1
,
b
2
,
c
;
x
,
y
)
+
b
1
F
1
(
a
,
b
1
+
1
,
b
2
,
c
;
x
,
y
)
+
b
2
F
1
(
a
,
b
1
,
b
2
+
1
,
c
;
x
,
y
)
=
0
,
{\displaystyle (a-b_{1}-b_{2})F_{1}(a,b_{1},b_{2},c;x,y)-a\,F_{1}(a+1,b_{1},b_{2},c;x,y)+b_{1}F_{1}(a,b_{1}+1,b_{2},c;x,y)+b_{2}F_{1}(a,b_{1},b_{2}+1,c;x,y)=0~,}
c
F
1
(
a
,
b
1
,
b
2
,
c
;
x
,
y
)
−
(
c
−
a
)
F
1
(
a
,
b
1
,
b
2
,
c
+
1
;
x
,
y
)
−
a
F
1
(
a
+
1
,
b
1
,
b
2
,
c
+
1
;
x
,
y
)
=
0
,
{\displaystyle c\,F_{1}(a,b_{1},b_{2},c;x,y)-(c-a)F_{1}(a,b_{1},b_{2},c+1;x,y)-a\,F_{1}(a+1,b_{1},b_{2},c+1;x,y)=0~,}
c
F
1
(
a
,
b
1
,
b
2
,
c
;
x
,
y
)
+
c
(
x
−
1
)
F
1
(
a
,
b
1
+
1
,
b
2
,
c
;
x
,
y
)
−
(
c
−
a
)
x
F
1
(
a
,
b
1
+
1
,
b
2
,
c
+
1
;
x
,
y
)
=
0
,
{\displaystyle c\,F_{1}(a,b_{1},b_{2},c;x,y)+c(x-1)F_{1}(a,b_{1}+1,b_{2},c;x,y)-(c-a)x\,F_{1}(a,b_{1}+1,b_{2},c+1;x,y)=0~,}
c
F
1
(
a
,
b
1
,
b
2
,
c
;
x
,
y
)
+
c
(
y
−
1
)
F
1
(
a
,
b
1
,
b
2
+
1
,
c
;
x
,
y
)
−
(
c
−
a
)
y
F
1
(
a
,
b
1
,
b
2
+
1
,
c
+
1
;
x
,
y
)
=
0
.
{\displaystyle c\,F_{1}(a,b_{1},b_{2},c;x,y)+c(y-1)F_{1}(a,b_{1},b_{2}+1,c;x,y)-(c-a)y\,F_{1}(a,b_{1},b_{2}+1,c+1;x,y)=0~.}
Any other relation[ 3] valid for F 1 can be derived from these four.
Similarly, all recurrence relations for Appell's F 3 follow from this set of five:
c
F
3
(
a
1
,
a
2
,
b
1
,
b
2
,
c
;
x
,
y
)
+
(
a
1
+
a
2
−
c
)
F
3
(
a
1
,
a
2
,
b
1
,
b
2
,
c
+
1
;
x
,
y
)
−
a
1
F
3
(
a
1
+
1
,
a
2
,
b
1
,
b
2
,
c
+
1
;
x
,
y
)
−
a
2
F
3
(
a
1
,
a
2
+
1
,
b
1
,
b
2
,
c
+
1
;
x
,
y
)
=
0
,
{\displaystyle c\,F_{3}(a_{1},a_{2},b_{1},b_{2},c;x,y)+(a_{1}+a_{2}-c)F_{3}(a_{1},a_{2},b_{1},b_{2},c+1;x,y)-a_{1}F_{3}(a_{1}+1,a_{2},b_{1},b_{2},c+1;x,y)-a_{2}F_{3}(a_{1},a_{2}+1,b_{1},b_{2},c+1;x,y)=0~,}
c
F
3
(
a
1
,
a
2
,
b
1
,
b
2
,
c
;
x
,
y
)
−
c
F
3
(
a
1
+
1
,
a
2
,
b
1
,
b
2
,
c
;
x
,
y
)
+
b
1
x
F
3
(
a
1
+
1
,
a
2
,
b
1
+
1
,
b
2
,
c
+
1
;
x
,
y
)
=
0
,
{\displaystyle c\,F_{3}(a_{1},a_{2},b_{1},b_{2},c;x,y)-c\,F_{3}(a_{1}+1,a_{2},b_{1},b_{2},c;x,y)+b_{1}x\,F_{3}(a_{1}+1,a_{2},b_{1}+1,b_{2},c+1;x,y)=0~,}
c
F
3
(
a
1
,
a
2
,
b
1
,
b
2
,
c
;
x
,
y
)
−
c
F
3
(
a
1
,
a
2
+
1
,
b
1
,
b
2
,
c
;
x
,
y
)
+
b
2
y
F
3
(
a
1
,
a
2
+
1
,
b
1
,
b
2
+
1
,
c
+
1
;
x
,
y
)
=
0
,
{\displaystyle c\,F_{3}(a_{1},a_{2},b_{1},b_{2},c;x,y)-c\,F_{3}(a_{1},a_{2}+1,b_{1},b_{2},c;x,y)+b_{2}y\,F_{3}(a_{1},a_{2}+1,b_{1},b_{2}+1,c+1;x,y)=0~,}
c
F
3
(
a
1
,
a
2
,
b
1
,
b
2
,
c
;
x
,
y
)
−
c
F
3
(
a
1
,
a
2
,
b
1
+
1
,
b
2
,
c
;
x
,
y
)
+
a
1
x
F
3
(
a
1
+
1
,
a
2
,
b
1
+
1
,
b
2
,
c
+
1
;
x
,
y
)
=
0
,
{\displaystyle c\,F_{3}(a_{1},a_{2},b_{1},b_{2},c;x,y)-c\,F_{3}(a_{1},a_{2},b_{1}+1,b_{2},c;x,y)+a_{1}x\,F_{3}(a_{1}+1,a_{2},b_{1}+1,b_{2},c+1;x,y)=0~,}
c
F
3
(
a
1
,
a
2
,
b
1
,
b
2
,
c
;
x
,
y
)
−
c
F
3
(
a
1
,
a
2
,
b
1
,
b
2
+
1
,
c
;
x
,
y
)
+
a
2
y
F
3
(
a
1
,
a
2
+
1
,
b
1
,
b
2
+
1
,
c
+
1
;
x
,
y
)
=
0
.
{\displaystyle c\,F_{3}(a_{1},a_{2},b_{1},b_{2},c;x,y)-c\,F_{3}(a_{1},a_{2},b_{1},b_{2}+1,c;x,y)+a_{2}y\,F_{3}(a_{1},a_{2}+1,b_{1},b_{2}+1,c+1;x,y)=0~.}
Derivatives and differential equations
edit
For Appell's F 1 , the following derivatives result from the definition by a double series:
∂
n
∂
x
n
F
1
(
a
,
b
1
,
b
2
,
c
;
x
,
y
)
=
(
a
)
n
(
b
1
)
n
(
c
)
n
F
1
(
a
+
n
,
b
1
+
n
,
b
2
,
c
+
n
;
x
,
y
)
{\displaystyle {\frac {\partial ^{n}}{\partial x^{n}}}F_{1}(a,b_{1},b_{2},c;x,y)={\frac {\left(a\right)_{n}\left(b_{1}\right)_{n}}{\left(c\right)_{n}}}F_{1}(a+n,b_{1}+n,b_{2},c+n;x,y)}
∂
n
∂
y
n
F
1
(
a
,
b
1
,
b
2
,
c
;
x
,
y
)
=
(
a
)
n
(
b
2
)
n
(
c
)
n
F
1
(
a
+
n
,
b
1
,
b
2
+
n
,
c
+
n
;
x
,
y
)
{\displaystyle {\frac {\partial ^{n}}{\partial y^{n}}}F_{1}(a,b_{1},b_{2},c;x,y)={\frac {\left(a\right)_{n}\left(b_{2}\right)_{n}}{\left(c\right)_{n}}}F_{1}(a+n,b_{1},b_{2}+n,c+n;x,y)}
From its definition, Appell's F 1 is further found to satisfy the following system of second-order differential equations :
x
(
1
−
x
)
∂
2
F
1
(
x
,
y
)
∂
x
2
+
y
(
1
−
x
)
∂
2
F
1
(
x
,
y
)
∂
x
∂
y
+
[
c
−
(
a
+
b
1
+
1
)
x
]
∂
F
1
(
x
,
y
)
∂
x
−
b
1
y
∂
F
1
(
x
,
y
)
∂
y
−
a
b
1
F
1
(
x
,
y
)
=
0
{\displaystyle x(1-x){\frac {\partial ^{2}F_{1}(x,y)}{\partial x^{2}}}+y(1-x){\frac {\partial ^{2}F_{1}(x,y)}{\partial x\partial y}}+[c-(a+b_{1}+1)x]{\frac {\partial F_{1}(x,y)}{\partial x}}-b_{1}y{\frac {\partial F_{1}(x,y)}{\partial y}}-ab_{1}F_{1}(x,y)=0}
y
(
1
−
y
)
∂
2
F
1
(
x
,
y
)
∂
y
2
+
x
(
1
−
y
)
∂
2
F
1
(
x
,
y
)
∂
x
∂
y
+
[
c
−
(
a
+
b
2
+
1
)
y
]
∂
F
1
(
x
,
y
)
∂
y
−
b
2
x
∂
F
1
(
x
,
y
)
∂
x
−
a
b
2
F
1
(
x
,
y
)
=
0
{\displaystyle y(1-y){\frac {\partial ^{2}F_{1}(x,y)}{\partial y^{2}}}+x(1-y){\frac {\partial ^{2}F_{1}(x,y)}{\partial x\partial y}}+[c-(a+b_{2}+1)y]{\frac {\partial F_{1}(x,y)}{\partial y}}-b_{2}x{\frac {\partial F_{1}(x,y)}{\partial x}}-ab_{2}F_{1}(x,y)=0}
A system partial differential equations for F 2 is
x
(
1
−
x
)
∂
2
F
2
(
x
,
y
)
∂
x
2
−
x
y
∂
2
F
2
(
x
,
y
)
∂
x
∂
y
+
[
c
1
−
(
a
+
b
1
+
1
)
x
]
∂
F
2
(
x
,
y
)
∂
x
−
b
1
y
∂
F
2
(
x
,
y
)
∂
y
−
a
b
1
F
2
(
x
,
y
)
=
0
{\displaystyle x(1-x){\frac {\partial ^{2}F_{2}(x,y)}{\partial x^{2}}}-xy{\frac {\partial ^{2}F_{2}(x,y)}{\partial x\partial y}}+[c_{1}-(a+b_{1}+1)x]{\frac {\partial F_{2}(x,y)}{\partial x}}-b_{1}y{\frac {\partial F_{2}(x,y)}{\partial y}}-ab_{1}F_{2}(x,y)=0}
y
(
1
−
y
)
∂
2
F
2
(
x
,
y
)
∂
y
2
−
x
y
∂
2
F
2
(
x
,
y
)
∂
x
∂
y
+
[
c
2
−
(
a
+
b
2
+
1
)
y
]
∂
F
2
(
x
,
y
)
∂
y
−
b
2
x
∂
F
2
(
x
,
y
)
∂
x
−
a
b
2
F
2
(
x
,
y
)
=
0
{\displaystyle y(1-y){\frac {\partial ^{2}F_{2}(x,y)}{\partial y^{2}}}-xy{\frac {\partial ^{2}F_{2}(x,y)}{\partial x\partial y}}+[c_{2}-(a+b_{2}+1)y]{\frac {\partial F_{2}(x,y)}{\partial y}}-b_{2}x{\frac {\partial F_{2}(x,y)}{\partial x}}-ab_{2}F_{2}(x,y)=0}
The system have solution
F
2
(
x
,
y
)
=
C
1
F
2
(
a
,
b
1
,
b
2
,
c
1
,
c
2
;
x
,
y
)
+
C
2
x
1
−
c
1
F
2
(
a
−
c
1
+
1
,
b
1
−
c
1
+
1
,
b
2
,
2
−
c
1
,
c
2
;
x
,
y
)
+
C
3
y
1
−
c
2
F
2
(
a
−
c
2
+
1
,
b
1
,
b
2
−
c
2
+
1
,
c
1
,
2
−
c
2
;
x
,
y
)
+
C
4
x
1
−
c
1
y
1
−
c
2
F
2
(
a
−
c
1
−
c
2
+
2
,
b
1
−
c
1
+
1
,
b
2
−
c
2
+
1
,
2
−
c
1
,
2
−
c
2
;
x
,
y
)
{\displaystyle F_{2}(x,y)=C_{1}F_{2}(a,b_{1},b_{2},c_{1},c_{2};x,y)+C_{2}x^{1-c_{1}}F_{2}(a-c_{1}+1,b_{1}-c_{1}+1,b_{2},2-c_{1},c_{2};x,y)+C_{3}y^{1-c_{2}}F_{2}(a-c_{2}+1,b_{1},b_{2}-c_{2}+1,c_{1},2-c_{2};x,y)+C_{4}x^{1-c_{1}}y^{1-c_{2}}F_{2}(a-c_{1}-c_{2}+2,b_{1}-c_{1}+1,b_{2}-c_{2}+1,2-c_{1},2-c_{2};x,y)}
Similarly, for F 3 the following derivatives result from the definition:
∂
∂
x
F
3
(
a
1
,
a
2
,
b
1
,
b
2
,
c
;
x
,
y
)
=
a
1
b
1
c
F
3
(
a
1
+
1
,
a
2
,
b
1
+
1
,
b
2
,
c
+
1
;
x
,
y
)
{\displaystyle {\frac {\partial }{\partial x}}F_{3}(a_{1},a_{2},b_{1},b_{2},c;x,y)={\frac {a_{1}b_{1}}{c}}F_{3}(a_{1}+1,a_{2},b_{1}+1,b_{2},c+1;x,y)}
∂
∂
y
F
3
(
a
1
,
a
2
,
b
1
,
b
2
,
c
;
x
,
y
)
=
a
2
b
2
c
F
3
(
a
1
,
a
2
+
1
,
b
1
,
b
2
+
1
,
c
+
1
;
x
,
y
)
{\displaystyle {\frac {\partial }{\partial y}}F_{3}(a_{1},a_{2},b_{1},b_{2},c;x,y)={\frac {a_{2}b_{2}}{c}}F_{3}(a_{1},a_{2}+1,b_{1},b_{2}+1,c+1;x,y)}
And for F 3 the following system of differential equations is obtained:
x
(
1
−
x
)
∂
2
F
3
(
x
,
y
)
∂
x
2
+
y
∂
2
F
3
(
x
,
y
)
∂
x
∂
y
+
[
c
−
(
a
1
+
b
1
+
1
)
x
]
∂
F
3
(
x
,
y
)
∂
x
−
a
1
b
1
F
3
(
x
,
y
)
=
0
{\displaystyle x(1-x){\frac {\partial ^{2}F_{3}(x,y)}{\partial x^{2}}}+y{\frac {\partial ^{2}F_{3}(x,y)}{\partial x\partial y}}+[c-(a_{1}+b_{1}+1)x]{\frac {\partial F_{3}(x,y)}{\partial x}}-a_{1}b_{1}F_{3}(x,y)=0}
y
(
1
−
y
)
∂
2
F
3
(
x
,
y
)
∂
y
2
+
x
∂
2
F
3
(
x
,
y
)
∂
x
∂
y
+
[
c
−
(
a
2
+
b
2
+
1
)
y
]
∂
F
3
(
x
,
y
)
∂
y
−
a
2
b
2
F
3
(
x
,
y
)
=
0
{\displaystyle y(1-y){\frac {\partial ^{2}F_{3}(x,y)}{\partial y^{2}}}+x{\frac {\partial ^{2}F_{3}(x,y)}{\partial x\partial y}}+[c-(a_{2}+b_{2}+1)y]{\frac {\partial F_{3}(x,y)}{\partial y}}-a_{2}b_{2}F_{3}(x,y)=0}
A system partial differential equations for F 4 is
x
(
1
−
x
)
∂
2
F
4
(
x
,
y
)
∂
x
2
−
y
2
∂
2
F
4
(
x
,
y
)
∂
y
2
−
2
x
y
∂
2
F
4
(
x
,
y
)
∂
x
∂
y
+
[
c
1
−
(
a
+
b
+
1
)
x
]
∂
F
4
(
x
,
y
)
∂
x
−
(
a
+
b
+
1
)
y
∂
F
4
(
x
,
y
)
∂
y
−
a
b
F
4
(
x
,
y
)
=
0
{\displaystyle x(1-x){\frac {\partial ^{2}F_{4}(x,y)}{\partial x^{2}}}-y^{2}{\frac {\partial ^{2}F_{4}(x,y)}{\partial y^{2}}}-2xy{\frac {\partial ^{2}F_{4}(x,y)}{\partial x\partial y}}+[c_{1}-(a+b+1)x]{\frac {\partial F_{4}(x,y)}{\partial x}}-(a+b+1)y{\frac {\partial F_{4}(x,y)}{\partial y}}-abF_{4}(x,y)=0}
y
(
1
−
y
)
∂
2
F
4
(
x
,
y
)
∂
y
2
−
x
2
∂
2
F
4
(
x
,
y
)
∂
x
2
−
2
x
y
∂
2
F
4
(
x
,
y
)
∂
x
∂
y
+
[
c
2
−
(
a
+
b
+
1
)
y
]
∂
F
4
(
x
,
y
)
∂
y
−
(
a
+
b
+
1
)
x
∂
F
4
(
x
,
y
)
∂
x
−
a
b
F
4
(
x
,
y
)
=
0
{\displaystyle y(1-y){\frac {\partial ^{2}F_{4}(x,y)}{\partial y^{2}}}-x^{2}{\frac {\partial ^{2}F_{4}(x,y)}{\partial x^{2}}}-2xy{\frac {\partial ^{2}F_{4}(x,y)}{\partial x\partial y}}+[c_{2}-(a+b+1)y]{\frac {\partial F_{4}(x,y)}{\partial y}}-(a+b+1)x{\frac {\partial F_{4}(x,y)}{\partial x}}-abF_{4}(x,y)=0}
The system has solution
F
4
(
x
,
y
)
=
C
1
F
4
(
a
,
b
,
c
1
,
c
2
;
x
,
y
)
+
C
2
x
1
−
c
1
F
4
(
a
−
c
1
+
1
,
b
−
c
1
+
1
,
2
−
c
1
,
c
2
;
x
,
y
)
+
C
3
y
1
−
c
2
F
4
(
a
−
c
2
+
1
,
b
−
c
2
+
1
,
c
1
,
2
−
c
2
;
x
,
y
)
+
C
4
x
1
−
c
1
y
1
−
c
2
F
4
(
2
+
a
−
c
1
−
c
2
,
2
+
b
−
c
1
−
c
2
,
2
−
c
1
,
2
−
c
2
;
x
,
y
)
{\displaystyle F_{4}(x,y)=C_{1}F_{4}(a,b,c_{1},c_{2};x,y)+C_{2}x^{1-c_{1}}F_{4}(a-c_{1}+1,b-c_{1}+1,2-c_{1},c_{2};x,y)+C_{3}y^{1-c_{2}}F_{4}(a-c_{2}+1,b-c_{2}+1,c_{1},2-c_{2};x,y)+C_{4}x^{1-c_{1}}y^{1-c_{2}}F_{4}(2+a-c_{1}-c_{2},2+b-c_{1}-c_{2},2-c_{1},2-c_{2};x,y)}
Integral representations
edit
The four functions defined by Appell's double series can be represented in terms of double integrals involving elementary functions only (Gradshteyn et al. 2015 , §9.184). However, Émile Picard (1881 ) discovered that Appell's F 1 can also be written as a one-dimensional Euler -type integral :
F
1
(
a
,
b
1
,
b
2
,
c
;
x
,
y
)
=
Γ
(
c
)
Γ
(
a
)
Γ
(
c
−
a
)
∫
0
1
t
a
−
1
(
1
−
t
)
c
−
a
−
1
(
1
−
x
t
)
−
b
1
(
1
−
y
t
)
−
b
2
d
t
,
ℜ
c
>
ℜ
a
>
0
.
{\displaystyle F_{1}(a,b_{1},b_{2},c;x,y)={\frac {\Gamma (c)}{\Gamma (a)\Gamma (c-a)}}\int _{0}^{1}t^{a-1}(1-t)^{c-a-1}(1-xt)^{-b_{1}}(1-yt)^{-b_{2}}\,\mathrm {d} t,\quad \Re \,c>\Re \,a>0~.}
This representation can be verified by means of Taylor expansion of the integrand, followed by termwise integration.
Picard's integral representation implies that the incomplete elliptic integrals F and E as well as the complete elliptic integral Π are special cases of Appell's F 1 :
F
(
ϕ
,
k
)
=
∫
0
ϕ
d
θ
1
−
k
2
sin
2
θ
=
sin
(
ϕ
)
F
1
(
1
2
,
1
2
,
1
2
,
3
2
;
sin
2
ϕ
,
k
2
sin
2
ϕ
)
,
|
ℜ
ϕ
|
<
π
2
,
{\displaystyle F(\phi ,k)=\int _{0}^{\phi }{\frac {\mathrm {d} \theta }{\sqrt {1-k^{2}\sin ^{2}\theta }}}=\sin(\phi )\,F_{1}({\tfrac {1}{2}},{\tfrac {1}{2}},{\tfrac {1}{2}},{\tfrac {3}{2}};\sin ^{2}\phi ,k^{2}\sin ^{2}\phi ),\quad |\Re \,\phi |<{\frac {\pi }{2}}~,}
E
(
ϕ
,
k
)
=
∫
0
ϕ
1
−
k
2
sin
2
θ
d
θ
=
sin
(
ϕ
)
F
1
(
1
2
,
1
2
,
−
1
2
,
3
2
;
sin
2
ϕ
,
k
2
sin
2
ϕ
)
,
|
ℜ
ϕ
|
<
π
2
,
{\displaystyle E(\phi ,k)=\int _{0}^{\phi }{\sqrt {1-k^{2}\sin ^{2}\theta }}\,\mathrm {d} \theta =\sin(\phi )\,F_{1}({\tfrac {1}{2}},{\tfrac {1}{2}},-{\tfrac {1}{2}},{\tfrac {3}{2}};\sin ^{2}\phi ,k^{2}\sin ^{2}\phi ),\quad |\Re \,\phi |<{\frac {\pi }{2}}~,}
Π
(
n
,
k
)
=
∫
0
π
/
2
d
θ
(
1
−
n
sin
2
θ
)
1
−
k
2
sin
2
θ
=
π
2
F
1
(
1
2
,
1
,
1
2
,
1
;
n
,
k
2
)
.
{\displaystyle \Pi (n,k)=\int _{0}^{\pi /2}{\frac {\mathrm {d} \theta }{(1-n\sin ^{2}\theta ){\sqrt {1-k^{2}\sin ^{2}\theta }}}}={\frac {\pi }{2}}\,F_{1}({\tfrac {1}{2}},1,{\tfrac {1}{2}},1;n,k^{2})~.}
There are seven related series of two variables, Φ1 , Φ2 , Φ3 , Ψ1 , Ψ2 , Ξ1 , and Ξ2 , which generalize Kummer's confluent hypergeometric function 1 F 1 of one variable and the confluent hypergeometric limit function 0 F 1 of one variable in a similar manner. The first of these was introduced by Pierre Humbert in 1920 .
Giuseppe Lauricella (1893 ) defined four functions similar to the Appell series, but depending on many variables rather than just the two variables x and y . These series were also studied by Appell. They satisfy certain partial differential equations, and can also be given in terms of Euler-type integrals and contour integrals .
^ See Burchnall & Chaundy (1940), formula (30).
^ See Burchnall & Chaundy (1940), formula (26) or Erdélyi (1953), formula 5.12(9).
^ For example,
(
y
−
x
)
F
1
(
a
,
b
1
+
1
,
b
2
+
1
,
c
,
x
,
y
)
=
y
F
1
(
a
,
b
1
,
b
2
+
1
,
c
,
x
,
y
)
−
x
F
1
(
a
,
b
1
+
1
,
b
2
,
c
,
x
,
y
)
{\displaystyle (y-x)F_{1}(a,b_{1}+1,b_{2}+1,c,x,y)=y\,F_{1}(a,b_{1},b_{2}+1,c,x,y)-x\,F_{1}(a,b_{1}+1,b_{2},c,x,y)}
Appell, Paul (1880). "Sur les séries hypergéométriques de deux variables et sur des équations différentielles linéaires aux dérivées partielles". Comptes rendus hebdomadaires des séances de l'Académie des sciences (in French). 90 : 296–298 and 731–735. JFM 12.0296.01 . (see also "Sur la série F3 (α,α',β,β',γ; x,y)" in C. R. Acad. Sci. 90 , pp. 977–980)
Appell, Paul (1882). "Sur les fonctions hypergéométriques de deux variables" . Journal de Mathématiques Pures et Appliquées . (3ème série) (in French). 8 : 173–216. Archived from the original on April 12, 2013.
Appell, Paul; Kampé de Fériet, Joseph (1926). Fonctions hypergéométriques et hypersphériques; Polynômes d'Hermite (in French). Paris: Gauthier–Villars. JFM 52.0361.13 . (see p. 14)
Askey, R. A.; Olde Daalhuis, A. B. (2010), "Appell series" , in Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions , Cambridge University Press, ISBN 978-0-521-19225-5 , MR 2723248 .
Burchnall, J. L.; Chaundy, T. W. (1940). "Expansions of Appell's double hypergeometric functions". Q. J. Math . First Series. 11 : 249–270. doi :10.1093/qmath/os-11.1.249 .
Erdélyi, A. (1953). Higher Transcendental Functions, Vol. I (PDF) . New York: McGraw–Hill. (see p. 224)
Gradshteyn, Izrail Solomonovich ; Ryzhik, Iosif Moiseevich ; Geronimus, Yuri Veniaminovich ; Tseytlin, Michail Yulyevich ; Jeffrey, Alan (2015) [October 2014]. "9.18.". In Zwillinger, Daniel; Moll, Victor Hugo (eds.). Table of Integrals, Series, and Products . Translated by Scripta Technica, Inc. (8 ed.). Academic Press, Inc. ISBN 978-0-12-384933-5 . LCCN 2014010276 .
Humbert, Pierre (1920). "Sur les fonctions hypercylindriques". Comptes rendus hebdomadaires des séances de l'Académie des sciences (in French). 171 : 490–492. JFM 47.0348.01 .
Lauricella, Giuseppe (1893). "Sulle funzioni ipergeometriche a più variabili". Rendiconti del Circolo Matematico di Palermo (in Italian). 7 : 111–158. doi :10.1007/BF03012437 . JFM 25.0756.01 . S2CID 122316343 .
Picard, Émile (1881). "Sur une extension aux fonctions de deux variables du problème de Riemann relativ aux fonctions hypergéométriques" . Annales Scientifiques de l'École Normale Supérieure . Série 2 (in French). 10 : 305–322. doi :10.24033/asens.203 . JFM 13.0389.01 . (see also C. R. Acad. Sci. 90 (1880), pp. 1119–1121 and 1267–1269)
Slater, Lucy Joan (1966). Generalized hypergeometric functions . Cambridge, UK: Cambridge University Press. ISBN 0-521-06483-X . MR 0201688 . (there is a 2008 paperback with ISBN 978-0-521-09061-2 )