Balian–Low theorem

(Redirected from Balian-Low theorem)

In mathematics, the Balian–Low theorem in Fourier analysis is named for Roger Balian and Francis E. Low. The theorem states that there is no well-localized window function (or Gabor atom) g either in time or frequency for an exact Gabor frame (Riesz Basis).

Statement

edit

Suppose g is a square-integrable function on the real line, and consider the so-called Gabor system

 

for integers m and n, and a,b>0 satisfying ab=1. The Balian–Low theorem states that if

 

is an orthonormal basis for the Hilbert space

 

then either

 

Generalizations

edit

The Balian–Low theorem has been extended to exact Gabor frames.

See also

edit

References

edit
  • Benedetto, John J.; Heil, Christopher; Walnut, David F. (1994). "Differentiation and the Balian–Low Theorem". Journal of Fourier Analysis and Applications. 1 (4): 355–402. CiteSeerX 10.1.1.118.7368. doi:10.1007/s00041-001-4016-5.

This article incorporates material from Balian-Low on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.