Reproducing kernel Hilbert space

(Redirected from Bergman spaces)

In functional analysis, a reproducing kernel Hilbert space (RKHS) is a Hilbert space of functions in which point evaluation is a continuous linear functional. Specifically, a Hilbert space of functions from a set (to or ) is an RKHS if, for each , there exists a function such that for all ,

Figure illustrates related but varying approaches to viewing RKHS

The function is called the reproducing kernel, and it reproduces the value of at via the inner product.

An immediate consequence of this property is that if two functions and in the RKHS are close in norm (i.e., is small), then and are also pointwise close (i.e., is small). This follows from the fact that the inner product induces pointwise evaluation control. Roughly speaking, this means that closeness in the RKHS norm implies pointwise closeness, but the converse does not necessarily hold.

For example, consider the sequence of functions . These functions converge pointwise to 0 as , but they do not converge uniformly (i.e., they do not converge with respect to the supremum norm). This illustrates that pointwise convergence does not imply convergence in norm. It is important to note that the supremum norm does not arise from any inner product, as it does not satisfy the parallelogram law.

It is not entirely straightforward to construct natural examples of a Hilbert space which are not an RKHS in a non-trivial fashion.[1] Some examples, however, have been found.[2][3]

While L2 spaces is usually defined as a Hilbert space whose elements are equivalence classes of functions it can be trivially redefined as a Hilbert space of functions by using choice to select a (total) function as a representative for each equivalence class. However, no choice of representatives can make this space an RKHS ( would need to be the non-existent Dirac delta function). However, there are RKHSs in which the norm is an L2-norm, such as the space of band-limited functions (see the example below).

An RKHS is associated with a kernel that reproduces every function in the space in the sense that for every in the set on which the functions are defined, "evaluation at " can be performed by taking an inner product with a function determined by the kernel. Such a reproducing kernel exists if and only if every evaluation functional is continuous.

The reproducing kernel was first introduced in the 1907 work of Stanisław Zaremba concerning boundary value problems for harmonic and biharmonic functions. James Mercer simultaneously examined functions which satisfy the reproducing property in the theory of integral equations. The idea of the reproducing kernel remained untouched for nearly twenty years until it appeared in the dissertations of Gábor Szegő, Stefan Bergman, and Salomon Bochner. The subject was eventually systematically developed in the early 1950s by Nachman Aronszajn and Stefan Bergman.[4]

These spaces have wide applications, including complex analysis, harmonic analysis, and quantum mechanics. Reproducing kernel Hilbert spaces are particularly important in the field of statistical learning theory because of the celebrated representer theorem which states that every function in an RKHS that minimises an empirical risk functional can be written as a linear combination of the kernel function evaluated at the training points. This is a practically useful result as it effectively simplifies the empirical risk minimization problem from an infinite dimensional to a finite dimensional optimization problem.

For ease of understanding, we provide the framework for real-valued Hilbert spaces. The theory can be easily extended to spaces of complex-valued functions and hence include the many important examples of reproducing kernel Hilbert spaces that are spaces of analytic functions.[5]

Definition

edit

Let   be an arbitrary set and   a Hilbert space of real-valued functions on  , equipped with pointwise addition and pointwise scalar multiplication. The evaluation functional over the Hilbert space of functions   is a linear functional that evaluates each function at a point  ,

 

We say that H is a reproducing kernel Hilbert space if, for all   in  ,   is continuous at every   in   or, equivalently, if   is a bounded operator on  , i.e. there exists some   such that

  (1)

Although   is assumed for all  , it might still be the case that  .

While property (1) is the weakest condition that ensures both the existence of an inner product and the evaluation of every function in   at every point in the domain, it does not lend itself to easy application in practice. A more intuitive definition of the RKHS can be obtained by observing that this property guarantees that the evaluation functional can be represented by taking the inner product of   with a function   in  . This function is the so-called reproducing kernel[citation needed] for the Hilbert space   from which the RKHS takes its name. More formally, the Riesz representation theorem implies that for all   in   there exists a unique element   of   with the reproducing property,

  (2)

Since   is itself a function defined on   with values in the field   (or   in the case of complex Hilbert spaces) and as   is in   we have that

 

where   is the element in   associated to  .

This allows us to define the reproducing kernel of   as a function   (or   in the complex case) by

 

From this definition it is easy to see that   (or   in the complex case) is both symmetric (resp. conjugate symmetric) and positive definite, i.e.

 

for every  [6] The Moore–Aronszajn theorem (see below) is a sort of converse to this: if a function   satisfies these conditions then there is a Hilbert space of functions on   for which it is a reproducing kernel.

Examples

edit

The simplest example of a reproducing kernel Hilbert space is the space   where   is a set and   is the counting measure on  . For  , the reproducing kernel   is the indicator function of the one point set  .

Nontrivial reproducing kernel Hilbert spaces often involve analytic functions, as we now illustrate by example. Consider the Hilbert space of bandlimited continuous functions  . Fix some cutoff frequency   and define the Hilbert space

 

where   is the set of square integrable functions, and   is the Fourier transform of  . As the inner product, we use

 

Since this is a closed subspace of  , it is a Hilbert space. Moreover, the elements of   are smooth functions on   that tend to zero at infinity, essentially by the Riemann-Lebesgue lemma. In fact, the elements of   are the restrictions to   of entire holomorphic functions, by the Paley–Wiener theorem.

From the Fourier inversion theorem, we have

 

It then follows by the Cauchy–Schwarz inequality and Plancherel's theorem that, for all  ,

 

This inequality shows that the evaluation functional is bounded, proving that   is indeed a RKHS.

The kernel function   in this case is given by

 

The Fourier transform of   defined above is given by

 

which is a consequence of the time-shifting property of the Fourier transform. Consequently, using Plancherel's theorem, we have

 

Thus we obtain the reproducing property of the kernel.

  in this case is the "bandlimited version" of the Dirac delta function, and that   converges to   in the weak sense as the cutoff frequency   tends to infinity.

Moore–Aronszajn theorem

edit

We have seen how a reproducing kernel Hilbert space defines a reproducing kernel function that is both symmetric and positive definite. The Moore–Aronszajn theorem goes in the other direction; it states that every symmetric, positive definite kernel defines a unique reproducing kernel Hilbert space. The theorem first appeared in Aronszajn's Theory of Reproducing Kernels, although he attributes it to E. H. Moore.

Theorem. Suppose K is a symmetric, positive definite kernel on a set X. Then there is a unique Hilbert space of functions on X for which K is a reproducing kernel.

Proof. For all x in X, define Kx = K(x, ⋅ ). Let H0 be the linear span of {Kx : xX}. Define an inner product on H0 by

 

which implies  . The symmetry of this inner product follows from the symmetry of K and the non-degeneracy follows from the fact that K is positive definite.

Let H be the completion of H0 with respect to this inner product. Then H consists of functions of the form

 

Now we can check the reproducing property (2):

 

To prove uniqueness, let G be another Hilbert space of functions for which K is a reproducing kernel. For every x and y in X, (2) implies that

 

By linearity,   on the span of  . Then   because G is complete and contains H0 and hence contains its completion.

Now we need to prove that every element of G is in H. Let   be an element of G. Since H is a closed subspace of G, we can write   where   and  . Now if   then, since K is a reproducing kernel of G and H:

 

where we have used the fact that   belongs to H so that its inner product with   in G is zero. This shows that   in G and concludes the proof.

Integral operators and Mercer's theorem

edit

We may characterize a symmetric positive definite kernel   via the integral operator using Mercer's theorem and obtain an additional view of the RKHS. Let   be a compact space equipped with a strictly positive finite Borel measure   and   a continuous, symmetric, and positive definite function. Define the integral operator   as

 

where   is the space of square integrable functions with respect to  .

Mercer's theorem states that the spectral decomposition of the integral operator   of   yields a series representation of   in terms of the eigenvalues and eigenfunctions of  . This then implies that   is a reproducing kernel so that the corresponding RKHS can be defined in terms of these eigenvalues and eigenfunctions. We provide the details below.

Under these assumptions   is a compact, continuous, self-adjoint, and positive operator. The spectral theorem for self-adjoint operators implies that there is an at most countable decreasing sequence   such that   and  , where the   form an orthonormal basis of  . By the positivity of   for all   One can also show that   maps continuously into the space of continuous functions   and therefore we may choose continuous functions as the eigenvectors, that is,   for all   Then by Mercer's theorem   may be written in terms of the eigenvalues and continuous eigenfunctions as

 

for all   such that

 

This above series representation is referred to as a Mercer kernel or Mercer representation of  .

Furthermore, it can be shown that the RKHS   of   is given by

 

where the inner product of   given by

 

This representation of the RKHS has application in probability and statistics, for example to the Karhunen-Loève representation for stochastic processes and kernel PCA.

Feature maps

edit

A feature map is a map  , where   is a Hilbert space which we will call the feature space. The first sections presented the connection between bounded/continuous evaluation functions, positive definite functions, and integral operators and in this section we provide another representation of the RKHS in terms of feature maps.

Every feature map defines a kernel via

  (3)

Clearly   is symmetric and positive definiteness follows from the properties of inner product in  . Conversely, every positive definite function and corresponding reproducing kernel Hilbert space has infinitely many associated feature maps such that (3) holds.

For example, we can trivially take   and   for all  . Then (3) is satisfied by the reproducing property. Another classical example of a feature map relates to the previous section regarding integral operators by taking   and  .

This connection between kernels and feature maps provides us with a new way to understand positive definite functions and hence reproducing kernels as inner products in  . Moreover, every feature map can naturally define a RKHS by means of the definition of a positive definite function.

Lastly, feature maps allow us to construct function spaces that reveal another perspective on the RKHS. Consider the linear space

 

We can define a norm on   by

 

It can be shown that   is a RKHS with kernel defined by  . This representation implies that the elements of the RKHS are inner products of elements in the feature space and can accordingly be seen as hyperplanes. This view of the RKHS is related to the kernel trick in machine learning.[7]

Properties

edit

Useful properties of RKHSs:

  • Let   be a sequence of sets and   be a collection of corresponding positive definite functions on   It then follows that
     
    is a kernel on  
  • Let   then the restriction of   to   is also a reproducing kernel.
  • Consider a normalized kernel   such that   for all  . Define a pseudo-metric on X as
     
    By the Cauchy–Schwarz inequality,
     
    This inequality allows us to view   as a measure of similarity between inputs. If   are similar then   will be closer to 1 while if   are dissimilar then   will be closer to 0.
  • The closure of the span of   coincides with  .[8]

Common examples

edit

Bilinear kernels

edit
 

The RKHS   corresponding to this kernel is the dual space, consisting of functions   satisfying  .

Polynomial kernels

edit
 

These are another common class of kernels which satisfy  . Some examples include:

  • Gaussian or squared exponential kernel:
     
  • Laplacian kernel:
     
    The squared norm of a function   in the RKHS   with this kernel is:[9][10]
     

We also provide examples of Bergman kernels. Let X be finite and let H consist of all complex-valued functions on X. Then an element of H can be represented as an array of complex numbers. If the usual inner product is used, then Kx is the function whose value is 1 at x and 0 everywhere else, and   can be thought of as an identity matrix since

 

In this case, H is isomorphic to  .

The case of   (where   denotes the unit disc) is more sophisticated. Here the Bergman space   is the space of square-integrable holomorphic functions on  . It can be shown that the reproducing kernel for   is

 

Lastly, the space of band limited functions in   with bandwidth   is a RKHS with reproducing kernel

 

Extension to vector-valued functions

edit

In this section we extend the definition of the RKHS to spaces of vector-valued functions as this extension is particularly important in multi-task learning and manifold regularization. The main difference is that the reproducing kernel   is a symmetric function that is now a positive semi-definite matrix for every   in  . More formally, we define a vector-valued RKHS (vvRKHS) as a Hilbert space of functions   such that for all   and  

 

and

 

This second property parallels the reproducing property for the scalar-valued case. This definition can also be connected to integral operators, bounded evaluation functions, and feature maps as we saw for the scalar-valued RKHS. We can equivalently define the vvRKHS as a vector-valued Hilbert space with a bounded evaluation functional and show that this implies the existence of a unique reproducing kernel by the Riesz Representation theorem. Mercer's theorem can also be extended to address the vector-valued setting and we can therefore obtain a feature map view of the vvRKHS. Lastly, it can also be shown that the closure of the span of   coincides with  , another property similar to the scalar-valued case.

We can gain intuition for the vvRKHS by taking a component-wise perspective on these spaces. In particular, we find that every vvRKHS is isometrically isomorphic to a scalar-valued RKHS on a particular input space. Let  . Consider the space   and the corresponding reproducing kernel

  (4)

As noted above, the RKHS associated to this reproducing kernel is given by the closure of the span of   where   for every set of pairs  .

The connection to the scalar-valued RKHS can then be made by the fact that every matrix-valued kernel can be identified with a kernel of the form of (4) via

 

Moreover, every kernel with the form of (4) defines a matrix-valued kernel with the above expression. Now letting the map   be defined as

 

where   is the   component of the canonical basis for  , one can show that   is bijective and an isometry between   and  .

While this view of the vvRKHS can be useful in multi-task learning, this isometry does not reduce the study of the vector-valued case to that of the scalar-valued case. In fact, this isometry procedure can make both the scalar-valued kernel and the input space too difficult to work with in practice as properties of the original kernels are often lost.[11][12][13]

An important class of matrix-valued reproducing kernels are separable kernels which can factorized as the product of a scalar valued kernel and a  -dimensional symmetric positive semi-definite matrix. In light of our previous discussion these kernels are of the form

 

for all   in   and   in  . As the scalar-valued kernel encodes dependencies between the inputs, we can observe that the matrix-valued kernel encodes dependencies among both the inputs and the outputs.

We lastly remark that the above theory can be further extended to spaces of functions with values in function spaces but obtaining kernels for these spaces is a more difficult task.[14]

Connection between RKHSs and the ReLU function

edit

The ReLU function is commonly defined as   and is a mainstay in the architecture of neural networks where it is used as an activation function. One can construct a ReLU-like nonlinear function using the theory of reproducing kernel Hilbert spaces. Below, we derive this construction and show how it implies the representation power of neural networks with ReLU activations.

We will work with the Hilbert space   of absolutely continuous functions with   and square integrable (i.e.  ) derivative. It has the inner product

 

To construct the reproducing kernel it suffices to consider a dense subspace, so let   and  . The Fundamental Theorem of Calculus then gives

 

where

 

and   i.e.

 

This implies   reproduces  .

Moreover the minimum function on   has the following representations with the ReLu function:

 

Using this formulation, we can apply the representer theorem to the RKHS, letting one prove the optimality of using ReLU activations in neural network settings.[citation needed]

See also

edit

Notes

edit
  1. ^ Alpay, D., and T. M. Mills. "A family of Hilbert spaces which are not reproducing kernel Hilbert spaces." J. Anal. Appl. 1.2 (2003): 107–111.
  2. ^ Z. Pasternak-Winiarski, "On weights which admit reproducing kernel of Bergman type", International Journal of Mathematics and Mathematical Sciences, vol. 15, Issue 1, 1992.
  3. ^ T. Ł. Żynda, "On weights which admit reproducing kernel of Szegő type", Journal of Contemporary Mathematical Analysis (Armenian Academy of Sciences), 55, 2020.
  4. ^ Okutmustur
  5. ^ Paulson
  6. ^ Durrett
  7. ^ Rosasco
  8. ^ Rosasco
  9. ^ Berlinet, Alain and Thomas, Christine. Reproducing kernel Hilbert spaces in Probability and Statistics, Kluwer Academic Publishers, 2004
  10. ^ Thomas-Agnan C . Computing a family of reproducing kernels for statistical applications. Numerical Algorithms, 13, pp. 21-32 (1996)
  11. ^ De Vito
  12. ^ Zhang
  13. ^ Alvarez
  14. ^ Rosasco

References

edit
  • Alvarez, Mauricio, Rosasco, Lorenzo and Lawrence, Neil, “Kernels for Vector-Valued Functions: a Review,” https://arxiv.org/abs/1106.6251, June 2011.
  • Aronszajn, Nachman (1950). "Theory of Reproducing Kernels". Transactions of the American Mathematical Society. 68 (3): 337–404. doi:10.1090/S0002-9947-1950-0051437-7. JSTOR 1990404. MR 0051437.
  • Berlinet, Alain and Thomas, Christine. Reproducing kernel Hilbert spaces in Probability and Statistics, Kluwer Academic Publishers, 2004.
  • Cucker, Felipe; Smale, Steve (2002). "On the Mathematical Foundations of Learning". Bulletin of the American Mathematical Society. 39 (1): 1–49. doi:10.1090/S0273-0979-01-00923-5. MR 1864085.
  • De Vito, Ernest, Umanita, Veronica, and Villa, Silvia. "An extension of Mercer theorem to vector-valued measurable kernels," arXiv:1110.4017, June 2013.
  • Durrett, Greg. 9.520 Course Notes, Massachusetts Institute of Technology, https://www.mit.edu/~9.520/scribe-notes/class03_gdurett.pdf, February 2010.
  • Kimeldorf, George; Wahba, Grace (1971). "Some results on Tchebycheffian Spline Functions" (PDF). Journal of Mathematical Analysis and Applications. 33 (1): 82–95. doi:10.1016/0022-247X(71)90184-3. MR 0290013.
  • Okutmustur, Baver. “Reproducing Kernel Hilbert Spaces,” M.S. dissertation, Bilkent University, http://www.thesis.bilkent.edu.tr/0002953.pdf, August 2005.
  • Paulsen, Vern. “An introduction to the theory of reproducing kernel Hilbert spaces,” https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=440218056738e05b5ab43679f932a9f33fccee87.
  • Steinwart, Ingo; Scovel, Clint (2012). "Mercer's theorem on general domains: On the interaction between measures, kernels, and RKHSs". Constr. Approx. 35 (3): 363–417. doi:10.1007/s00365-012-9153-3. MR 2914365. S2CID 253885172.
  • Rosasco, Lorenzo and Poggio, Thomas. "A Regularization Tour of Machine Learning – MIT 9.520 Lecture Notes" Manuscript, Dec. 2014.
  • Wahba, Grace, Spline Models for Observational Data, SIAM, 1990.
  • Zhang, Haizhang; Xu, Yuesheng; Zhang, Qinghui (2012). "Refinement of Operator-valued Reproducing Kernels" (PDF). Journal of Machine Learning Research. 13: 91–136.