Bifidobacterium adolescentis is an anaerobic species of bacteria found in the gastrointestinal tracts of humans and other primates.[1] It is one of the most abundant and prevalent Bifidobacterium species detected in human populations, especially in adults.[2][3]
Bifidobacterium adolescentis | |
---|---|
Scientific classification | |
Domain: | Bacteria |
Phylum: | Actinomycetota |
Class: | Actinomycetia |
Order: | Bifidobacteriales |
Family: | Bifidobacteriaceae |
Genus: | Bifidobacterium |
Species: | B. adolescentis
|
Binomial name | |
Bifidobacterium adolescentis Reuter 1963 (Approved Lists 1980)
|
Research into health benefits
editBifidobacterium adolescentis has been studied for its health benefits, as strains have been shown to potentially protect against or improve recovery from several diseases, including liver-related,[4] metabolic,[5] allergic airway,[6] colitis,[7] arthritis,[8] and bacterial infections.[9] Strains have also been demonstrated to possess anti-inflammatory,[10] anxiolytic,[11] antioxidant,[12] antidepressant,[13] and/or antiviral[14] activity.
In addition, B. adolescentis strains have been of interest for their ability to metabolize prebiotics such as arabinoxylan,[15] XOS,[16] and GOS.[17] Bifidobacteria typically produce acetic acid and lactic acid, though the exact ratio depends on the bacterial strain, the carbohydrate being metabolized, and the growth conditions.[18] Production of short chain fatty acids and lactic acid in the colon is associated with health benefits.[19]
Bifidobacterium adolescentis contributes to the production of GABA,[20] a neurotransmitter that plays a role in reducing stress and anxiety. Some B. adolescentis strains can also synthesize B vitamins,[21] such as folic acid.[22] One strain has been shown to be bifidogenic in the GI tract. That is, the presence of one B. adolescentis strain enhances the growth of all bifidobacteria, a group that generally confers positive health benefits[23] and is important for healthy aging.[24]
Some B. adolescentis have been shown to strengthen the intestinal barrier[25] that is important in preventing pathogenic bacteria and toxins from traveling from the gut lumen into the body. Another study suggested the opposite effect: an undefined B. adolescentis strain was observed to disrupt gut barrier functions in colonic epithelial cell cultures.[26]
Multiple probiotics are marked as containing B. adolescentis, however there are few commercially available named strains (PRL2019,[20] SD-BA5-IT,[27] iVS-1[25]) with published scientific studies supporting their health claims.
References
edit- ^ Lugli, Gabriele Andrea; Alessandri, Giulia; Milani, Christian; Mancabelli, Leonardo; Ruiz, Lorena; Fontana, Federico; Borragán, Santiago; González, Andrea; Turroni, Francesca; Ossiprandi, Maria Cristina; Margolles, Abelardo; van Sinderen, Douwe; Ventura, Marco (August 2020). "Evolutionary development and co-phylogeny of primate-associated bifidobacteria". Environmental Microbiology. 22 (8): 3375–3393. doi:10.1111/1462-2920.15108. hdl:10261/223012. PMID 32515117. S2CID 219552451.
- ^ Derrien, Muriel; Turroni, Francesca; Ventura, Marco; van Sinderen, Douwe (October 2022). "Insights into endogenous Bifidobacterium species in the human gut microbiota during adulthood". Trends in Microbiology. 30 (10): 940–947. doi:10.1016/j.tim.2022.04.004. PMID 35577716. S2CID 248783095.
- ^ Pasolli, Edoardo; Schiffer, Lucas; Manghi, Paolo; Renson, Audrey; Obenchain, Valerie; Truong, Duy Tin; Beghini, Francesco; Malik, Faizan; Ramos, Marcel; Dowd, Jennifer B; Huttenhower, Curtis; Morgan, Martin; Segata, Nicola; Waldron, Levi (November 2017). "Accessible, curated metagenomic data through ExperimentHub". Nature Methods. 14 (11): 1023–1024. doi:10.1038/nmeth.4468. PMC 5862039. PMID 29088129.
- ^ Long, Xiaoxue; Liu, Dan; Gao, Qiongmei; Ni, Jiacheng; Qian, Lingling; Ni, Yueqiong; Fang, Qichen; Jia, Weiping; Li, Huating (30 December 2021). "Bifidobacterium adolescentis Alleviates Liver Steatosis and Steatohepatitis by Increasing Fibroblast Growth Factor 21 Sensitivity". Frontiers in Endocrinology. 12: 773340. doi:10.3389/fendo.2021.773340. PMC 8756294. PMID 35035378.
- ^ Chen, Jinjin; Wang, Ren; Li, Xiao-Fang; Wang, Rui-Liang (28 May 2012). "Bifidobacterium adolescentis supplementation ameliorates visceral fat accumulation and insulin sensitivity in an experimental model of the metabolic syndrome". British Journal of Nutrition. 107 (10): 1429–1434. doi:10.1017/S0007114511004491. PMID 21914236. S2CID 3480942.
- ^ Casaro, M. C., Crisma, A. R., Vieira, A. T., Silva, G. H. M., Mendes, E., Ribeiro, W. R., Martins, F. S., Ferreira, C. M. (10 April 2018). "Prophylactic Bifidobacterium adolescentis ATTCC 15703 supplementation reduces partially allergic airway disease in Balb/c but not in C57BL/6 mice". Beneficial Microbes. 9 (3). Wageningen Academic Publishers: 465–476. doi:10.3920/BM2017.0073. ISSN 1876-2891. PMID 29633635.
- ^ Wu, W., Wang, Y., Zou, J., Long, F., Yan, H., Zeng, L., Chen, Y. (5 January 2017). "Bifidobacterium adolescentis protects against necrotizing enterocolitis and upregulates TOLLIP and SIGIRR in premature neonatal rats". BMC Pediatrics. 17 (1). BioMed Central Ltd.: 1–7. doi:10.1186/s12887-016-0759-7. ISSN 1471-2431. PMC 5217633. PMID 28056921.
- ^ Fan, Z., Yang, B., Ross, R. P., Stanton, C., Shi, G., Zhao, J., Zhang, H., Chen, W. (26 May 2020). "Protective effects of Bifidobacterium adolescentis on collagen-induced arthritis in rats depend on timing of administration". Food & Function. 11 (5). The Royal Society of Chemistry: 4499–4511. doi:10.1039/D0FO00077A. ISSN 2042-650X. PMID 32383727. S2CID 218555170.
- ^ Wittmann, A., Autenrieth, I. B., Frick, J. S. (20 August 2013). "Plasmacytoid dendritic cells are crucial in Bifidobacterium adolescentis-mediated inhibition of Yersinia enterocolitica infection". PLOS ONE. 8 (8). Public Library of Science: e71338. Bibcode:2013PLoSO...871338W. doi:10.1371/JOURNAL.PONE.0071338. ISSN 1932-6203. PMC 3748105. PMID 23977019.
- ^ Kawabata, K., Baba, N., Sakano, T., Hamano, Y., Taira, S., Tamura, A., Baba, S., Natsume, M., Ishii, T., Murakami, S., Ohigashi, H. (3 April 2018). "Functional properties of anti-inflammatory substances from quercetin-treated Bifidobacterium adolescentis". Bioscience, Biotechnology, and Biochemistry. 82 (4). Oxford Academic: 689–697. doi:10.1080/09168451.2017.1401916. ISSN 0916-8451. PMID 29165050. S2CID 2092475.
- ^ Jang, H. M., Jang, S. E., Han, M. J., Kim, D. H. (3 October 2017). "Anxiolytic-like effect of Bifidobacterium adolescentis IM38 in mice with or without immobilisation stress". Beneficial Microbes. 9 (1). Wageningen Academic Publishers: 123–132. doi:10.3920/BM2016.0226. ISSN 1876-2891. PMID 28969445.
- ^ Huang, H. C., Chang, T. M. (14 September 2012). "Antioxidative properties and inhibitory effect of Bifidobacterium adolescentis on melanogenesis". World Journal of Microbiology and Biotechnology. 28 (9). Springer: 2903–2912. doi:10.1007/s11274-012-1096-0. ISSN 0959-3993. PMID 22806726. S2CID 21042891.
- ^ Guo, Y., Xie, J. P., Deng, K., Li, X., Yuan, Y., Xuan, Q., Xie, J., He, X. M., Wang, Q., Li, J. J., Luo, H. R. (22 May 2019). "Prophylactic effects of Bifidobacterium adolescentis on anxiety and depression-like phenotypes after chronic stress: a role of the gut microbiota-inflammation axis". Frontiers in Behavioral Neuroscience. 13. Frontiers Media SA: 126. doi:10.3389/FNBEH.2019.00126. ISSN 1662-5153. PMC 6591489. PMID 31275120.
- ^ Lee, D. K., Kang, J. Y., Shin, H. S., Park, I. H., Ha, N. J. (9 December 2013). "Antiviral activity of Bifidobacterium adolescentis SPM0212 against Hepatitis B virus". Archives of Pharmacal Research. 36 (12). Springer: 1525–1532. doi:10.1007/s12272-013-0141-3. ISSN 0253-6269. PMID 23657805. S2CID 255555304.
- ^ Van Laere, K. M. J., Beldman, G., Voragen, A. G. J. (1997). "A new arabinofuranohydrolase from Bifidobacterium adolescentis able to remove arabinosyl residues from double-substituted xylose units in arabinoxylan". Appl Microbiol Biotechnol. 47 (3): 231–235. doi:10.1007/s002530050918. PMID 9114514. S2CID 2347318.
- ^ Yang, J., Tang, Q., Xu, L., Li, Z., Ma, Y., Yao, D. (1 November 2019). "Combining of transcriptome and metabolome analyses for understanding the utilization and metabolic pathways of Xylo-oligosaccharide in Bifidobacterium adolescentis ATCC 15703". Food Science & Nutrition. 7 (11). Wiley-Blackwell: 3480–3493. doi:10.1002/FSN3.1194. ISSN 2048-7177. PMC 6848847. PMID 31762999.
- ^ Krumbeck, J. A., Maldonado-Gomez, M. X., Martínez, I., Frese, S. A., Burkey, T. E., Rasineni, K., Ramer-Tait, A. E., Harris, E. N., Hutkins, R. W., Walter, J. (2015). "In vivo selection to identify bacterial strains with enhanced ecological performance in synbiotic applications". Applied and Environmental Microbiology. 81 (7). Appl Environ Microbiol: 2455–2465. Bibcode:2015ApEnM..81.2455K. doi:10.1128/AEM.03903-14. ISSN 1098-5336. PMC 4357922. PMID 25616794.
- ^ McLaughlin, H. P., Motherway, M. O. C., Lakshminarayanan, B., Stanton, C., Paul Ross, R., Brulc, J., Menon, R., O’Toole, P. W., Sinderen, D. van (6 June 2015). "Carbohydrate catabolic diversity of bifidobacteria and lactobacilli of human origin". International Journal of Food Microbiology. 203. Elsevier B.V.: 109–121. doi:10.1016/j.ijfoodmicro.2015.03.008. ISSN 1879-3460. PMID 25817019.
- ^ Xiong, R. G., Zhou, D. D., Wu, S. X., Huang, S. Y., Saimaiti, A., Yang, Z. J., Shang, A., Zhao, C. N., Gan, R. Y., Li, H. Bin (2022), "Health Benefits and Side Effects of Short-Chain Fatty Acids", Foods, 11 (18), MDPI: 2863, doi:10.3390/foods11182863, PMC 9498509, PMID 36140990
- ^ a b Duranti, S., Ruiz, L., Lugli, G. A., Tames, H., Milani, C., Mancabelli, L., Mancino, W., Longhi, G., Carnevali, L., Sgoifo, A., Margolles, A., Ventura, M., Ruas-Madiedo, P., Turroni, F. (1 December 2020). "Bifidobacterium adolescentis as a key member of the human gut microbiota in the production of GABA". Scientific Reports. 10 (1). Nature Research: 14112. Bibcode:2020NatSR..1014112D. doi:10.1038/s41598-020-70986-z. ISSN 2045-2322. PMC 7445748. PMID 32839473.
- ^ Arunachalam, K. D., Author, C., Arunachalam, K. D., Arunachalam, K. (1999), "Role of Bifidobacteria in Nutrition, Medicine, and Technology", Nutrition Research, 19 (10): 1559–1597, doi:10.1016/S0271-5317(99)00112-8
- ^ Rossi, M., Amaretti, A., Raimondi, S. (2011), "Folate production by probiotic bacteria", Nutrients, 3 (1), MDPI AG: 118–134, doi:10.3390/nu3010118, PMC 3257725, PMID 22254078
- ^ Hidalgo-Cantabrana, C., Delgado, S., Ruiz, L., Ruas-Madiedo, P., Sánchez, B., Margolles, A. (19 May 2017). "Bifidobacteria and Their Health-Promoting Effects". Microbiology Spectrum. 5 (3). American Society for Microbiology. doi:10.1128/microbiolspec.bad-0010-2016. ISSN 2165-0497. PMID 28643627.
- ^ Kumar, M., Babaei, P., Ji, B., Nielsen, J. (28 October 2016). "Human gut microbiota and healthy aging: Recent developments and future prospective". Nutrition and Healthy Aging. 4 (1). IOS Press: 3–16. doi:10.3233/nha-150002. ISSN 2451-9480. PMC 5166512. PMID 28035338.
- ^ a b Krumbeck, J. A., Rasmussen, H. E., Hutkins, R. W., Clarke, J., Shawron, K., Keshavarzian, A., Walter, J. (28 June 2018). "Probiotic Bifidobacterium strains and galactooligosaccharides improve intestinal barrier function in obese adults but show no synergism when used together as synbiotics". Microbiome. 6 (1). BioMed Central Ltd.: 121. doi:10.1186/s40168-018-0494-4. ISSN 2049-2618. PMC 6022452. PMID 29954454.
- ^ Bootz-Maoz, H., Pearl, A., Melzer, E., Malnick, S., Sharon, E., Bennet, Y., Tsentsarevsky, R., Abuchatzera, S., Amidror, S., Aretz, E., Azriel, S., Gam Ze Letova, C., Naama, M., Shoval, I., Yaron, O., Karako-Lampert, S., Bel, S., Yissachar, N. (15 November 2022). "Diet-induced modifications to human microbiome reshape colonic homeostasis in irritable bowel syndrome". Cell Reports. 41 (7). Elsevier B.V.: 111657. doi:10.1016/j.celrep.2022.111657. ISSN 2211-1247. PMID 36384106.
- ^ Strozzi, G. P., Mogna, L. (2008). "Quantification of Folic Acid in Human Feces After Administration of Bifidobacterium Probiotic Strains". Journal of Clinical Gastroenterology. 42: S179–S184. doi:10.1097/MCG.0b013e31818087d8. PMID 18685499. S2CID 21844102.