Brahmagupta polynomials are a class of polynomials associated with the Brahmagupa matrix which in turn is associated with the Brahmagupta's identity. The concept and terminology were introduced by E. R. Suryanarayan, University of Rhode Island, Kingston in a paper published in 1996.[1][2][3] These polynomials have several interesting properties and have found applications in tiling problems[4] and in the problem of finding Heronian triangles in which the lengths of the sides are consecutive integers.[5]
Definition
editBrahmagupta's identity
editIn algebra, Brahmagupta's identity says that, for given integer N, the product of two numbers of the form is again a number of the form. More precisely, we have
This identity can be used to generate infinitely many solutions to the Pell's equation. It can also be used to generate successively better rational approximations to square roots of arbitrary integers.
Brahmagupta matrix
editIf, for an arbitrary real number , we define the matrix
then, Brahmagupta's identity can be expressed in the following form:
The matrix is called the Brahmagupta matrix.
Brahmagupta polynomials
editLet be as above. Then, it can be seen by induction that the matrix can be written in the form
Here, and are polynomials in . These polynomials are called the Brahmagupta polynomials. The first few of the polynomials are listed below:
Properties
editA few elementary properties of the Brahmagupta polynomials are summarized here. More advanced properties are discussed in the paper by Suryanarayan.[1]
Recurrence relations
editThe polynomials and satisfy the following recurrence relations:
Exact expressions
editThe eigenvalues of are and the corresponding eigenvectors are . Hence
- .
It follows that
- .
This yields the following exact expressions for and :
Expanding the powers in the above exact expressions using the binomial theorem and simplifying one gets the following expressions for and :
Special cases
edit- If and then, for :
- is the Fibonacci sequence .
- is the Lucas sequence .
- If we set and , then:
- which are the numerators of continued fraction convergents to .[6] This is also the sequence of half Pell-Lucas numbers.
- which is the sequence of Pell numbers.
A differential equation
editand are polynomial solutions of the following partial differential equation:
References
edit- ^ a b E. R. Suryanarayan (February 1996). "Brahmagupta polynomials" (PDF). The Fibonacci Quarterly. 34: 30–39. doi:10.1080/00150517.1996.12429095. Retrieved 30 November 2023.
- ^ Eric W. Weisstein (1999). CRC Concise Encyclopedia of Mathematics. CRC Press. pp. 166–167. Retrieved 30 November 2023.
- ^ E. R. Suryanarayan (February 1998). "The Brahmagupta polynomials in two complex variables" (PDF). The Fibonacci Quarterly. 36: 34–42. doi:10.1080/00150517.1998.12428958. Retrieved 1 December 2023.
- ^ Charles Dunkl and Mourad Ismail (October 2000). Proceedings of the International Workshop on Special Functions. World Scientific. pp. 282–292. doi:10.1142/9789812792303_0022. Retrieved 30 November 2023.(In the proceedings, see paper authored by R. Rangarajan and E. R. Suryanarayan and titled "The Brahmagupta Matrix and its applications")
- ^ Raymond A. Beauregard and E. R. Suryanarayan (January 1998). "The Brahmagupta Triangle" (PDF). College Mathematics Journal. 29 (1): 13-17. doi:10.1080/07468342.1998.11973907. Retrieved 30 November 2023.
- ^ N. J. A. Sloane. "A001333". The On-Line Encyclopedia of Integer Sequences. Retrieved 1 December 2023.