Cerium(III) bromide

(Redirected from CeBr3)

Cerium(III) bromide is an inorganic compound with the formula CeBr3. This white hygroscopic solid is of interest as a component of scintillation counters.

Cerium(III) bromide
Names
IUPAC names
Cerium(III) bromide
Cerium tribromide
Other names
Cerous bromide
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.034.936 Edit this at Wikidata
EC Number
  • 238-447-0
UNII
  • InChI=1S/3BrH.Ce/h3*1H;/q;;;+3/p-3 checkY
    Key: MOOUSOJAOQPDEH-UHFFFAOYSA-K checkY
  • InChI=1/3BrH.Ce/h3*1H;/q;;;+3/p-3
    Key: MOOUSOJAOQPDEH-DFZHHIFOAB
  • [Ce+3].[Br-].[Br-].[Br-]
Properties
CeBr3
Molar mass 379.828 g/mol
Appearance grey to white solid, hygroscopic
Density 5.1 g/cm3, solid
Melting point 722 °C (1,332 °F; 995 K)
Boiling point 1,457 °C (2,655 °F; 1,730 K)
4.56 mol kg−1 (153.8 g/100 g)[1]
Structure
hexagonal (UCl3 type), hP8
P63/m, No. 176
Tricapped trigonal prismatic
(nine-coordinate)
Hazards
GHS labelling:
GHS07: Exclamation mark
Warning
H315, H319, H335
Flash point Non-flammable
Related compounds
Other anions
Cerium(III) fluoride
Cerium(III) chloride
Cerium(III) iodide
Other cations
Lanthanum(III) bromide
Praseodymium(III) bromide
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)

Preparation and basic properties

edit

The compound has been known since at least 1899, when Muthman and Stützel reported its preparation from cerium sulfide and gaseous HBr.[2] Aqueous solutions of CeBr3 can be prepared from the reaction of Ce2(CO3)3·H2O with HBr. The product, CeBr3·H2O can be dehydrated by heating with NH4Br followed by sublimation of residual NH4Br. CeBr3 can be distilled at reduced pressure (~ 0.1 Pa) in a quartz ampoule at 875-880 °C.[3] Like the related salt CeCl3, the bromide absorbs water on exposure to moist air. The compound melts congruently at 722 °C, and well ordered single crystals may be produced using standard crystal growth methods like Bridgman or Czochralski.

CeBr3 adopts the hexagonal, UCl3-type crystal structure with the P63/m space group.[4][5] The cerium ions are 9-coordinate and adopt a tricapped trigonal prismatic geometry.[6] The cerium–bromine bond lengths are 3.11 Å and 3.16 Å.[7]

Applications

edit

CeBr3-doped lanthanum bromide single crystals are known to exhibit superior scintillation properties for applications in the security, medical imaging, and geophysics detectors.[8][9]

Undoped single crystals of CeBr3 have shown promise as a γ-ray scintillation detector in nuclear non-proliferation testing, medical imaging, environmental remediation, and oil exploration.[10]

Suppliers

edit

References

edit
  1. ^ Mioduski, Tomasz; Gumiński, Cezary; Zeng, Dewen; Voigt, Heidelore (2013). "IUPAC-NIST Solubility Data Series. 94. Rare Earth Metal Iodides and Bromides in Water and Aqueous Systems. Part 2. Bromides". Journal of Physical and Chemical Reference Data. 42 (1). AIP Publishing: 013101. Bibcode:2013JPCRD..42a3101M. doi:10.1063/1.4766752. ISSN 0047-2689.
  2. ^ Muthmann, W.; Stützel, L. (1899). "Eine einfache Methode zur Darstellung der Schwefel-, Chlor- und Brom-Verbindungen der Ceritmetalle". Berichte der Deutschen Chemischen Gesellschaft (in German). 32 (3). Wiley: 3413–3419. doi:10.1002/cber.189903203115. ISSN 0365-9496.
  3. ^ Rycerz, L.; Ingier-Stocka, E.; Berkani, M.; Gaune-Escard, M. (2007). "Thermodynamic Functions of Congruently Melting Compounds Formed in the CeBr3−KBr Binary System". Journal of Chemical & Engineering Data. 52 (4). American Chemical Society (ACS): 1209–1212. doi:10.1021/je600517u. ISSN 0021-9568.
  4. ^ Morosin, B. (1968). "Crystal Structures of Anhydrous Rare-Earth Chlorides". The Journal of Chemical Physics. 49 (7). AIP Publishing: 3007–3012. Bibcode:1968JChPh..49.3007M. doi:10.1063/1.1670543. ISSN 0021-9606.
  5. ^ Wells, A. F. (1984). Structural Inorganic Chemistry (5th ed.). Oxford University Press. p. 421. ISBN 978-0-19-965763-6.
  6. ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. pp. 1240–1241. ISBN 978-0-08-037941-8.
  7. ^ Zachariasen, W. H. (1948). "Crystal chemical studies of the 5f-series of elements. I. New structure types". Acta Crystallogr. 1 (5): 265–268. Bibcode:1948AcCry...1..265Z. doi:10.1107/S0365110X48000703.
  8. ^ van Loef, E. V. D.; Dorenbos, P.; van Eijk, C. W. E.; Krämer, K.; Güdel, H. U. (2001-09-03). "High-energy-resolution scintillator: Ce3+ activated LaBr3". Applied Physics Letters. 79 (10). AIP Publishing: 1573–1575. Bibcode:2001ApPhL..79.1573V. doi:10.1063/1.1385342. ISSN 0003-6951.
  9. ^ Menge, Peter R.; Gautier, G.; Iltis, A.; Rozsa, C.; Solovyev, V. (2007). "Performance of large lanthanum bromide scintillators". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 579 (1). Elsevier BV: 6–10. Bibcode:2007NIMPA.579....6M. doi:10.1016/j.nima.2007.04.002. ISSN 0168-9002.
  10. ^ Higgins, W.M.; Churilov, A.; van Loef, E.; Glodo, J.; Squillante, M.; Shah, K. (2008). "Crystal growth of large diameter LaBr3:Ce and CeBr3". Journal of Crystal Growth. 310 (7–9). Elsevier BV: 2085–2089. Bibcode:2008JCrGr.310.2085H. doi:10.1016/j.jcrysgro.2007.12.041. ISSN 0022-0248.