In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation[1] It has two cusps and is symmetric about the y-axis.[2]

Bicorn

History

edit

In 1864, James Joseph Sylvester studied the curve   in connection with the classification of quintic equations; he named the curve a bicorn because it has two cusps. This curve was further studied by Arthur Cayley in 1867.[3]

Properties

edit
 
A transformed bicorn with a = 1

The bicorn is a plane algebraic curve of degree four and genus zero. It has two cusp singularities in the real plane, and a double point in the complex projective plane at  . If we move   and   to the origin and perform an imaginary rotation on   by substituting   for   and   for   in the bicorn curve, we obtain   This curve, a limaçon, has an ordinary double point at the origin, and two nodes in the complex plane, at   and  .[4]

The parametric equations of a bicorn curve are   with  

See also

edit

References

edit
  1. ^ Lawrence, J. Dennis (1972). A catalog of special plane curves. Dover Publications. pp. 147–149. ISBN 0-486-60288-5.
  2. ^ "Bicorn". mathcurve.
  3. ^ The Collected Mathematical Papers of James Joseph Sylvester. Vol. II. Cambridge: Cambridge University press. 1908. p. 468.
  4. ^ "Bicorn". The MacTutor History of Mathematics.
edit