Phenanthrenoids are chemical compounds formed with a phenanthrene backbone. These compounds occur naturally in plants, although they can also be synthesized.[1]

Chemical structure of gymnopusin, a chemical compound found in orchids

Phenanthrols

edit

Phenanthrols are any of five isomeric phenols derived from phenanthrene (1-phenanthrol, 2-phenanthrol, 3-phenanthrol, 4-phenanthrol, 9-phenanthrol). These molecules can be biomarkers of smoking and/or PAH worker exposure.[2]

Chemistry

edit

Under UV irradiation, stilbene and its derivatives undergo intramolecular cyclization to form dihydrophenanthrenes.

Natural occurrences

edit

Phenanthrenes have been reported from flowering plants, mainly in the family Orchidaceae, and a few in the families Dioscoreaceae, Combretaceae and Betulaceae, as well as in the lower plant class Marchantiophyta (liverworts).[3]

The rhizome of Dioscorea communis contains phenanthrenes (7-hydroxy-2,3,4,8-tetramethoxyphenanthrene, 2,3,4-trimethoxy-7,8-methylenedioxyphenanthrene, 3-hydroxy-2,4,-dimethoxy-7,8-methylenedioxyphenanthrene, 2-hydroxy-3,5,7-trimethoxyphenanthrene and 2-hydroxy-3,5,7-trimethoxy-9,10-dihydrophenanthrene).[4]

The dimeric phenanthrenoid 8,8'-bidehydrojuncusol and the monomeric dehydrojuncusol can be isolated from Juncus acutus.[5]

Perakensol is a phenanthrenoid that can be isolated from Alseodaphne perakensis.[6]

In orchids

edit

Phenanthrenes have been reported in species of Dendrobium, Bulbophyllum, Eria, Maxillaria, Bletilla, Coelogyne, Cymbidium, Ephemerantha and Epidendrum.[3]

3,4,8-Trimethoxyphenanthrene-2,5-diol is one of the 17 phenanthrenes found in the extract of the stems of the orchid Dendrobium nobile.[7][8]

Three phenanthrenes can be isolated from the stems of the orchid Flickingeria fimbriata. The structures are 2,5-dihydroxy-4,9,10-trimethoxyphenanthrene, 2,5-dihydroxy-4-methoxyphenanthrene and 2,5,9-trihydroxy-4-methoxy-9,10-dihydrophenanthrene. These molecules are named plicatol A, B and C.[9]

Nudol is a phenanthrene from the orchids Eulophia nuda, Eria carinata and Eria stricta.[10] 9,10-Dihydro-2,5-dimethoxyphenanthrene-1,7-diol is a phenanthrene from Eulophia nuda. This compound shows cytotoxic activity against human cancer cells.[11]

2,7-Dihydroxy-3,6-dimethoxyphenanthrene is a phenanthrene from Dehaasia longipedicellata.[12]

Bulbophyllum gymnopus produces the phenanthrenediol gymnopusin.[13]

Bulbophyllum reptans contains gymnopusin, confusarin (2,7-dihydroxy-3,4,8-trimethoxyphenanthrene), 2,7-dihydroxy-3,4,6-trimethoxyphenanthrene and its 9,10-dihydro derivative, flavanthrinin (2,7-dihydroxy-4-methoxyphenanthrene) and its 9,10-dihydro derivative (coelonin), cirrhopetalanthrin (2,2′,7,7′-tetrahydroxy-4,4′-dimethoxy-1,1′-biphenanthryl), its 9,9′,10,10′-tetrahydro derivative (flavanthrin) and the dimeric phenanthrenes reptanthrin and isoreptanthrin.[14]

Bulbophyllum vaginatum contains the two phenanthrenes 4,9-dimethoxyphenanthrene-2,5-diol and 4,6-dimethoxyphenanthrene-2,3,7-triol, and the two dihydrophenanthrenes 4-methoxy-9,10-dihydrophenanthrene-2,3,7-triol and 4,6-dimethoxy-9,10-dihydrophenanthrene-2,3,7-triol.[15]

Coelogyne cristata contains coeloginanthridin (3,5,7-trihydroxy-1,2-dimethoxy-9,10-dihydrophenanthrene), a 9,10-dihydrophenanthrene derivative, and coeloginanthrin (3,5,7-trihydroxy-1,2-dimethoxyphenanthrene), the corresponding phenanthrene analogue, coelogin and coeloginin.[16]

Orchinol and loroglossol have a phytoalexin effect and reduce the growth of Cattleya aurantiaca seedlings.[17]

The phenanthrenes 2,5-dihydroxy-3,4-dimethoxyphenanthrene, 9,10-dihydro-2,5-dihydroxy-3,4-dimethoxyphenanthrene, 2,7-dihydroxy-3,4-dimethoxyphenanthrene (nudol), 9,10-dihydro-2,7-dihydroxy-3,4-dimethoxyphenanthrene, 2,5-dihydroxy-3,4,9-trimethoxyphenanthrene and 2,7-dihydroxy-3,4,9-trimethoxyphenanthrene can be isolated from Maxillaria densa.[18]

Cirrhopetalanthrin is a dimeric phenanthrene derivative from Cirrhopetalum maculosum.[19]

Glycosides

edit

Five phenanthrene glycosides, denneanoside A, B, C, D and E and one 9,10-dihydrophenanthrene glycoside, denneanoside F, can be isolated from the stem of Dendrobium denneanum.[20]

Metabolism

edit

Cis-3,4-dihydrophenanthrene-3,4-diol dehydrogenase is an enzyme that uses (+)-cis-3,4-dihydrophenanthrene-3,4-diol and NAD+ to produce phenanthrene-3,4-diol, NADH and H+. This enzyme participates in naphthalene and anthracene degradation.

See also

edit

References

edit
  1. ^ Evans, David A.; Cain, Paul A.; Wong, Rayman Y. (1977). "A general approach to the synthesis of phenanthrenoid compounds. An alternative to oxidative phenolic coupling". J. Am. Chem. Soc. 99 (21): 7083–7085. doi:10.1021/ja00463a063.
  2. ^ Serdar, B; Waidyanatha, S; Zheng, Y; Rappaport, SM (2003). "Simultaneous determination of urinary 1- and 2-naphthols, 3- and 9-phenanthrols, and 1-pyrenol in coke oven workers". Biomarkers. 8 (2): 93–109. doi:10.1080/1354750021000046570. PMID 12775495.
  3. ^ a b Kovács, Adriána; Vasas, Andrea; Hohmann, Judit (2008). "Natural phenanthrenes and their biological activity". Phytochemistry. 69 (5): 1084–1110. Bibcode:2008PChem..69.1084K. doi:10.1016/j.phytochem.2007.12.005. PMID 18243254.
  4. ^ Kovácsa, Adriána; Forgob, Peter; Zupkóc, István; Réthyc, Borbála; Falkayc, György; Szabód, Pál; Hohmanna, Judit (2007). "Phenanthrenes and a dihydrophenanthrene from Tamus communis and their cytotoxic activity". Phytochemistry. 68 (5): 687–691. Bibcode:2007PChem..68..687K. doi:10.1016/j.phytochem.2006.10.028. PMID 17166530.
  5. ^ FA1, Behery; Naeem, ZE; Maatooq, GT; Amer, MM; Ahmed, AF (2013). "A novel antioxidant phenanthrenoid dimer from Juncus acutus L.". Nat Prod Res. 27 (2): 155–163. doi:10.1080/14786419.2012.662759. PMID 22360833.{{cite journal}}: CS1 maint: numeric names: authors list (link)
  6. ^ Mahmud, Zurinah; Khan, Mohammad N.; Lajis, Nordin H.; Toia, Robert F. (1992). "Perakensol: A Phenanthrenoid Isolated from Alseodaphne perakensis". J. Nat. Prod. 55 (4): 533–535. doi:10.1021/np50082a027.
  7. ^ Hwang, JS; Lee, SA; Hong, SS; Han, XH; Lee, C; Kang, SJ; Lee, D; Kim, Y; Hong, JT; Lee, MK; Hwang, BY (2010). "Phenanthrenes from Dendrobium nobile and their inhibition of the LPS-induced production of nitric oxide in macrophage RAW 264.7 cells". Bioorg Med Chem Lett. 20 (12): 3785–7. doi:10.1016/j.bmcl.2010.04.054.
  8. ^ Yang, H.; Sang, H.S.; Young, C.K. (2007). "Antifibrotic phenanthrenes of Dendrobium nobile stems". Journal of Natural Products. 70 (12): 1925–1929. doi:10.1021/np070423f. PMID 18052323.
  9. ^ Honda, Chie; Yamaki, Masae (2000). "Phenanthrenes from Dendrobium plicatile". Phytochemistry. 53 (8): 987–990. Bibcode:2000PChem..53..987H. doi:10.1016/S0031-9422(99)00497-5.
  10. ^ Bhandari, S (1985). "Nudol, a phenanthrene of the orchids Eulophia nuda, Eria carinata and Eria stricta". Phytochemistry. 24 (4): 801–804. Bibcode:1985PChem..24..801B. doi:10.1016/S0031-9422(00)84898-0.
  11. ^ Shriram, Varsha; Kumar, Vinay; Kishor, P B Kavi; Suryawanshi, Sharad B; Upadhyay, Ankur K; Bhat, Manoj K (2010). "Cytotoxic activity of 9,10-dihydro-2,5-dimethoxyphenanthrene-1,7-diol from Eulophia nuda against human cancer cells". Journal of Ethnopharmacology. 128 (1): 251–253. doi:10.1016/j.jep.2009.12.031. PMID 20045453.
  12. ^ Ropi Mukhtar, Mat; Azlan Nafiah, Mohd; Awang, Khalijah; Hadi, A. Hamid A.; Weng Ng, Seik (2008). "2,7-Dihydroxy-3,6-dimethoxyphenanthrene from Dehaasia longipedicellata". Acta Crystallographica E. 64 (6). doi:10.1107/S1600536808014451/bt2712Isup2.hkl.
  13. ^ Hughes, Andrew B.; Sargent, Melvyn V. (1989). "Structure and synthesis of gymnopusin, a novel phenanthrenediol from the orchid Bulbophyllum gymnopus". J. Chem. Soc. 1 (10): 1787–1791. doi:10.1039/P19890001787.
  14. ^ Majumder, P.L; Pal, S; Majumder, S (1999). "Dimeric phenanthrenes from the orchid Bulbophyllum reptans". Phytochemistry. 50 (5): 891–897. Bibcode:1999PChem..50..891M. doi:10.1016/S0031-9422(98)00609-8.
  15. ^ Leong Y-W, KAng C-C; Harrison, LJ; Powell, AD (1997). "Phenanthrenes, dihydrophenanthrenes and bibenzyls from the orchid Bulbophyllum vaginatum". Phytochemistry. 44 (1): 157–165. Bibcode:1997PChem..44..157L. doi:10.1016/s0031-9422(96)00387-1. INIST 2557322.
  16. ^ Majumder, PL; Sen, S; Majumder, S (Oct 2001). "Phenanthrene derivatives from the orchid Coelogyne cristata". Phytochemistry. 58 (4): 581–6. Bibcode:2001PChem..58..581M. doi:10.1016/s0031-9422(01)00287-4. PMID 11576602.
  17. ^ Hills, Katherine A.; Stoessl, Albert; Oliva, Allison P.; Arditti, Joseph (1984). "Effects of Orchinol, Loroglossol, Dehydroorchinol, Batatasin III, and 3,4'- Dihydroxy-5-Methoxydihydrostilbene on Orchid Seedlings". Botanical Gazette. 145 (3): 298–301. doi:10.1086/337458. JSTOR 2474721.
  18. ^ Estrada, Samuel; Toscano, Rubén A.; Mata, Rachel (1999). "New Phenanthrene Derivatives from Maxillaria densa". J. Nat. Prod. 62 (8): 1175–1178. doi:10.1021/np990061e. PMID 10479332.
  19. ^ Majumder, P.L.; Pal, Anjali; Joardar, Mukta (1990). "Cirrhopetalanthrin, a dimeric phenanthrene derivative from the orchid Cirrhopetalum maculosum". Phytochemistry. 29 (1): 271–274. Bibcode:1990PChem..29..271M. doi:10.1016/0031-9422(90)89048-E.
  20. ^ Li, Fu; Pan, Hong-Mei; Liu, Xin; Chen, Bin; Tang, Ya-Xiong; Xi, Xing-Jun; Wang, Ming-Kui (2013). "New phenanthrene glycosides from Dendrobium denneanum and their cytotoxic activity". Phytochemistry Letters. 6 (4): 640–644. Bibcode:2013PChL....6..640L. doi:10.1016/j.phytol.2013.08.003.
  21. ^ M. Toyota; T. Yoshida; Y. Kan; S. Takaoka; Y. Asakawa (1996). "(+)-Cavicularin: A Novel Optically Active Cyclic Bibenzyl-Dihydrophenanthrene Derivative from the Liverwort Cavicularia densa Steph". Tetrahedron Letters. 37 (27): 4745–4748. doi:10.1016/0040-4039(96)00956-2.[dead link]
edit