In differential geometry, a field in mathematics, a Lie bialgebroid consists of two compatible Lie algebroids defined on dual vector bundles. Lie bialgebroids are the vector bundle version of Lie bialgebras.
Definition
editPreliminary notions
editA Lie algebroid consists of a bilinear skew-symmetric operation on the sections of a vector bundle over a smooth manifold , together with a vector bundle morphism subject to the Leibniz rule
and Jacobi identity
where are sections of and is a smooth function on .
The Lie bracket can be extended to multivector fields graded symmetric via the Leibniz rule
for homogeneous multivector fields .
The Lie algebroid differential is an -linear operator on the -forms of degree 1 subject to the Leibniz rule
for -forms and . It is uniquely characterized by the conditions
and
for functions on , -1-forms and sections of .
The definition
editA Lie bialgebroid consists of two Lie algebroids and on the dual vector bundles and , subject to the compatibility
for all sections of . Here denotes the Lie algebroid differential of which also operates on the multivector fields .
Symmetry of the definition
editIt can be shown that the definition is symmetric in and , i.e. is a Lie bialgebroid if and only if is.
Examples
edit- A Lie bialgebra consists of two Lie algebras and on dual vector spaces and such that the Chevalley–Eilenberg differential is a derivation of the -bracket.
- A Poisson manifold gives naturally rise to a Lie bialgebroid on (with the commutator bracket of tangent vector fields) and (with the Lie bracket induced by the Poisson structure). The -differential is and the compatibility follows then from the Jacobi identity of the Schouten bracket.
Infinitesimal version of a Poisson groupoid
editIt is well known that the infinitesimal version of a Lie groupoid is a Lie algebroid (as a special case, the infinitesimal version of a Lie group is a Lie algebra). Therefore, one can ask which structures need to be differentiated in order to obtain a Lie bialgebroid.
Definition of Poisson groupoid
editA Poisson groupoid is a Lie groupoid together with a Poisson structure on such that the graph of the multiplication map is coisotropic. An example of a Poisson-Lie groupoid is a Poisson-Lie group (where is a point). Another example is a symplectic groupoid (where the Poisson structure is non-degenerate on ).
Differentiation of the structure
editRemember the construction of a Lie algebroid from a Lie groupoid. We take the -tangent fibers (or equivalently the -tangent fibers) and consider their vector bundle pulled back to the base manifold . A section of this vector bundle can be identified with a -invariant -vector field on which form a Lie algebra with respect to the commutator bracket on .
We thus take the Lie algebroid of the Poisson groupoid. It can be shown that the Poisson structure induces a fiber-linear Poisson structure on . Analogous to the construction of the cotangent Lie algebroid of a Poisson manifold there is a Lie algebroid structure on induced by this Poisson structure. Analogous to the Poisson manifold case one can show that and form a Lie bialgebroid.
Double of a Lie bialgebroid and superlanguage of Lie bialgebroids
editFor Lie bialgebras there is the notion of Manin triples, i.e. can be endowed with the structure of a Lie algebra such that and are subalgebras and contains the representation of on , vice versa. The sum structure is just
- .
Courant algebroids
editIt turns out that the naive generalization to Lie algebroids does not give a Lie algebroid any more. Instead one has to modify either the Jacobi identity or violate the skew-symmetry and is thus lead to Courant algebroids.[1]
Superlanguage
editThe appropriate superlanguage of a Lie algebroid is , the supermanifold whose space of (super)functions are the -forms. On this space the Lie algebroid can be encoded via its Lie algebroid differential, which is just an odd vector field.
As a first guess the super-realization of a Lie bialgebroid should be . But unfortunately is not a differential, basically because is not a Lie algebroid. Instead using the larger N-graded manifold to which we can lift and as odd Hamiltonian vector fields, then their sum squares to iff is a Lie bialgebroid.
References
edit- ^ Z.-J. Liu, A. Weinstein and P. Xu: Manin triples for Lie bialgebroids, Journ. of diff. geom. vol. 45, pp. 547–574 (1997)
- C. Albert and P. Dazord: Théorie des groupoïdes symplectiques: Chapitre II, Groupoïdes symplectiques. (in Publications du Département de Mathématiques de l’Université Claude Bernard, Lyon I, nouvelle série, pp. 27–99, 1990)
- Y. Kosmann-Schwarzbach: The Lie bialgebroid of a Poisson–Nijenhuis manifold. (Lett. Math. Phys., 38:421–428, 1996)
- K. Mackenzie, P. Xu: Integration of Lie bialgebroids (1997),
- K. Mackenzie, P. Xu: Lie bialgebroids and Poisson groupoids (Duke J. Math, 1994)
- A. Weinstein: Symplectic groupoids and Poisson manifolds (AMS Bull, 1987),