This article may be too technical for most readers to understand.(September 2023) |
In lattice field theory, overlap fermions are a fermion discretization that allows to avoid the fermion doubling problem. They are a realisation of Ginsparg–Wilson fermions.
Initially introduced by Neuberger in 1998,[1] they were quickly taken up for a variety of numerical simulations.[2][3][4] By now overlap fermions are well established and regularly used in non-perturbative fermion simulations, for instance in lattice QCD.[5][6]
Overlap fermions with mass are defined on a Euclidean spacetime lattice with spacing by the overlap Dirac operator
where is the ″kernel″ Dirac operator obeying , i.e. is -hermitian. The sign-function usually has to be calculated numerically, e.g. by rational approximations.[7] A common choice for the kernel is
where is the massless Dirac operator and is a free parameter that can be tuned to optimise locality of .[8]
Near the overlap Dirac operator recovers the correct continuum form (using the Feynman slash notation)
whereas the unphysical doublers near are suppressed by a high mass
and decouple.
Overlap fermions do not contradict the Nielsen–Ninomiya theorem because they explicitly violate chiral symmetry (obeying the Ginsparg–Wilson equation) and locality.[9]
References
edit- ^ Neuberger, H. (1998). "Exactly massless quarks on the lattice". Physics Letters B. 417 (1–2). Elsevier BV: 141–144. arXiv:hep-lat/9707022. Bibcode:1998PhLB..417..141N. doi:10.1016/s0370-2693(97)01368-3. ISSN 0370-2693. S2CID 119372020.
- ^ Jansen, K. (2002). "Overlap and domainwall fermions: what is the price of chirality?". Nuclear Physics B - Proceedings Supplements. 106–107: 191–192. arXiv:hep-lat/0111062. Bibcode:2002NuPhS.106..191J. doi:10.1016/S0920-5632(01)01660-7. ISSN 0920-5632. S2CID 2547180.
- ^ Chandrasekharan, S. (2004). "An introduction to chiral symmetry on the lattice". Progress in Particle and Nuclear Physics. 53 (2). Elsevier BV: 373–418. arXiv:hep-lat/0405024. Bibcode:2004PrPNP..53..373C. doi:10.1016/j.ppnp.2004.05.003. ISSN 0146-6410. S2CID 17473067.
- ^ Jansen, K. (2005). "Going chiral: twisted mass versus overlap fermions". Computer Physics Communications. 169 (1): 362–364. Bibcode:2005CoPhC.169..362J. doi:10.1016/j.cpc.2005.03.080. ISSN 0010-4655.
- ^ Smit, J. (2002). "8 Chiral symmetry". Introduction to Quantum Fields on a Lattice. Cambridge Lecture Notes in Physics. Cambridge: Cambridge University Press. pp. 211–212. doi:10.1017/CBO9780511583971. hdl:20.500.12657/64022. ISBN 9780511583971. S2CID 116214756.
- ^ FLAG Working Group; Aoki, S.; et al. (2014). "A.1 Lattice actions". Review of Lattice Results Concerning Low-Energy Particle Physics. Eur. Phys. J. C. Vol. 74. pp. 116–117. arXiv:1310.8555. doi:10.1140/epjc/s10052-014-2890-7. PMC 4410391. PMID 25972762.
{{cite book}}
: CS1 maint: multiple names: authors list (link) - ^ Kennedy, A.D. (2012). "Algorithms for Dynamical Fermions". arXiv:hep-lat/0607038.
{{cite journal}}
: Cite journal requires|journal=
(help) - ^ Gattringer, C.; Lang, C.B. (2009). "7 Chiral symmetry on the lattice". Quantum Chromodynamics on the Lattice: An Introductory Presentation. Lecture Notes in Physics 788. Springer. pp. 177–182. doi:10.1007/978-3-642-01850-3. ISBN 978-3642018497.
- ^ Vig, Réka Á.; Kovács, Tamás G. (2020-05-26). "Localization with overlap fermions". Physical Review D. 101 (9). arXiv:2001.06872. doi:10.1103/PhysRevD.101.094511. ISSN 2470-0010.