Somatic mutation and recombination tests
The somatic mutation and recombination tests (SMARTs) are in vivo genotoxicity tests performed in Drosophila melanogaster (Fruit fly).[1] These fruit fly tests are a short-term test and a non-mammalian approach for in vivo testing of putative genotoxins found in the environment. D. melanogaster has a short lifespan, which allows for fast reproductive cycles and high-throughput genotoxicity testing. D. melanogaster also has around 75% functional orthologs of human disease-related genes, making it an attractive in vivo model for human research.[2] The tests identify loss of heterozygosity for the specified genetic markers in heterozygous or trans-heterozygous adults using phenotypically observable genetic markers in adult tissues.[3][4] Although diverse events like point mutations/deletions, nondisjunction, and homologous mitotic recombination might theoretically cause this loss of heterozygosity, nondisjunction processes are generally not relevant for most of the examined chemicals.[5][6] SMARTs are two different tests that use the same genetic foundation, but target different adult tissues and are named accordingly: the wing-spot test[5] and the eye-spot test.[6]
Background
editIn the developmental phase, larval structures and imaginal discs - clusters of diploid cells of undifferentiated epithelium- are formed in the embryo.[7] The pupa emerges following the completion of the larval stages, and metamorphosis occurs as a result of systemic hormonal regulation, with histolysis of the larval organs and differentiation of the imaginal discs into adult components.[7][8] When these imaginal discs are exposed to genotoxic substances genetic mutations occur due to possible DNA damage that can be inherited by the progeny cells during mitosis. The phenotypic forms of these genetic mutations can be observed in adult body forms, like the wings and the eyes, and thus can be examined using the wing-spot test and the eye-spot test, respectively. The loss of heterozygosity (LOH) for specific genetic markers in heterozygous individuals enables for visual scoring of DNA damage/genotoxicity in adult tissues[9]
Types
editThe wing-spot test
editThe wing-spot test in D. melanogaster was first described by Graf and Würgler.[3] The wing-spot test determines for the induction of mutant spots that represent the loss of heterozygozity due to point mutation, deletion, nondisjunction, or mitotic recombination using the recessive genetic markers multiple wing hair (mwh) and flare-3 (flr3), located on chromosome number 3.
The eye spot test
editThe eye w/w+ SMART assay uses the X-chromosome white (w) gene as a recessive marker to monitor the presence of white clones in wild-type eyes, which indicate the occurrence of loss of heterozygosity at the white locus due to point mutations and/or deletions, as well as nondisjunction and homologous mitotic recombination in w/w+ somatic cells of Drosophila in vivo[6]
Applications
editThese tests are particularly effective instruments for analyzing (in vivo) the potential genotoxicity of chemicals in the somatic cells of a higher eukaryotic organism as they detect primarily the production of gene mutation and homologous recombination. It's worth noting that measuring mitotic recombination in somatic cells is important for genotoxicity screening since abnormal recombination activity is frequently linked to cancer.[10] Indeed, these tests have been used to determine the genotoxicity of a variety of agents, including radiation,[11][12][13] metals,[14][15][16][17] chemicals,[18] plant extracts/products,[19][20] therapeutic drugs,[21][22] food products[13][23] and various types of pollutants[24][25] and nanoparticles.They've also been employed to look for potential antimutagens.
References
edit- ^ von Borstel, R. C. (1987). "Chemical Mutagens, Principles, and Methods for Their Detection, Volume 10, F.J. de Serres (ed.). New York: Plenum Press, 1986, 545 pp, $69.50". Environmental Mutagenesis. 9 (2): 229–231. doi:10.1002/em.2860090212.
- ^ Pandey, Udai Bhan; Nichols, Charles D. (June 2011). Barker, Eric L. (ed.). "Human Disease Models in Drosophila melanogaster and the Role of the Fly in Therapeutic Drug Discovery". Pharmacological Reviews. 63 (2): 411–436. doi:10.1124/pr.110.003293. ISSN 0031-6997. PMC 3082451. PMID 21415126.
- ^ a b Graf, U.; Würgler, F. E.; Katz, A. J.; Frei, H.; Juon, H.; Hall, C. B.; Kale, P. G. (1984). "Somatic mutation and recombination test inDrosophila melanogaster". Environmental Mutagenesis. 6 (2): 153–188. doi:10.1002/em.2860060206. PMID 6423380.
- ^ Vogel, E.W.; Zijlstra, J.A. (October 1987). "Mechanistic and methodological aspects of chemically-induced somatic mutation and recombination in Drosophila melanogaster". Mutation Research/Environmental Mutagenesis and Related Subjects. 182 (5): 243–264. doi:10.1016/0165-1161(87)90010-0. PMID 3116423.
- ^ a b Graf, U.; Frei, H.; Kägi, A.; Katz, A.J.; Würgler, F.E. (April 1989). "Thirty compounds tested in the Drosophila wing spot test". Mutation Research/Genetic Toxicology. 222 (4): 359–373. doi:10.1016/0165-1218(89)90112-2. PMID 2495439.
- ^ a b c Vogel, Ekkehart W.; Nivard, Madeleine J. M. (1993). "Performance of 181 chemicals in a Drosophila assay predominantly monitoring interchromosomal mitotic recombination". Mutagenesis. 8 (1): 57–81. doi:10.1093/mutage/8.1.57. ISSN 0267-8357. PMID 8450769.
- ^ a b Gaivão, Isabel; Ferreira, João; María Sierra, Luisa (2021-01-27), Soloneski, Sonia; L. Larramendy, Marcelo (eds.), "The w / w + Somatic Mutation and Recombination Test (SMART) of Drosophila melanogaster for Detecting Antigenotoxic Activity", Genotoxicity and Mutagenicity - Mechanisms and Test Methods, IntechOpen, doi:10.5772/intechopen.91630, ISBN 978-1-83880-041-3, S2CID 216264392, retrieved 2021-12-01
- ^ Kumar, Justin P. (January 2012). "Building an ommatidium one cell at a time: Ommatidial Assembly in Drosophila". Developmental Dynamics. 241 (1): 136–149. doi:10.1002/dvdy.23707. PMC 3427658. PMID 22174084.
- ^ Vlastos, Dimitris; Drosopoulou, Elena; Efthimiou, Ioanna; Gavriilidis, Maximos; Panagaki, Dimitra; Mpatziou, Krystalenia; Kalamara, Paraskevi; Mademtzoglou, Despoina; Mavragani-Tsipidou, Penelope (2015-06-25). Fei, Peiwen (ed.). "Genotoxic and Antigenotoxic Assessment of Chios Mastic Oil by the In Vitro Micronucleus Test on Human Lymphocytes and the In Vivo Wing Somatic Test on Drosophila". PLOS ONE. 10 (6): e0130498. Bibcode:2015PLoSO..1030498V. doi:10.1371/journal.pone.0130498. ISSN 1932-6203. PMC 4482422. PMID 26110900.
- ^ Sengstag, Christian (January 1994). "The Role of Mitotic Recombination in Carcinogenesis". Critical Reviews in Toxicology. 24 (4): 323–353. doi:10.3109/10408449409017922. ISSN 1040-8444. PMID 7857521.
- ^ Guzmán-Rincón, J.; Delfín-Loya, A.; Ureña-Núñez, F.; Paredes, L. C.; Zambrano-Achirica, F.; Graf, U. (August 2005). "Genotoxicity of Neutrons in Drosophila melanogaster. Somatic Mutation and Recombination Induced by Reactor Neutrons". Radiation Research. 164 (2): 157–162. Bibcode:2005RadR..164..157G. doi:10.1667/RR3405. ISSN 0033-7587. PMID 16038586. S2CID 31254272.
- ^ Kaya, Bülent; Kocaoğlu, Serap; Demir, Eşref (June 2006). "Analysis of UV-stimulated recombination in the Drosophila SMART assay". Environmental and Molecular Mutagenesis. 47 (5): 357–361. Bibcode:2006EnvMM..47..357K. doi:10.1002/em.20215. ISSN 0893-6692. PMID 16628751. S2CID 39517955.
- ^ a b Demir, Eşref; Marcos, Ricard; Kaya, Bülent (October 2012). "Genotoxicity studies in the ST cross of the Drosophila wing spot test of sunflower and soybean oils before and after frying and boiling procedures". Food and Chemical Toxicology. 50 (10): 3619–3624. doi:10.1016/j.fct.2012.07.034. PMID 22847139.
- ^ Graf, Ulrich; Heo, Ok-Soon; Olvera Ramirez, Olga (April 1992). "The genotoxicity of chromium(VI) oxide in the wing spot test of Drosophila melanogaster is over 90% due to mitotic recombination". Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis. 266 (2): 197–203. Bibcode:1992MRFMM.266..197G. doi:10.1016/0027-5107(92)90187-7. PMID 1373829.
- ^ Ramos-Morales, Patricia; Rodriguez-Arnaiz, Rosario (1995). "Genotoxicity of two arsenic compounds in germ cells and somatic cells ofDrosophila melanogaster". Environmental and Molecular Mutagenesis. 25 (4): 288–299. Bibcode:1995EnvMM..25..288R. doi:10.1002/em.2850250405. PMID 7607183. S2CID 40394486.
- ^ Rizki, Mostapha; Kossatz, Elk; Creus, Amadeu; Marcos, Ricardo (2004). "Genotoxicity modulation by cadmium treatment: Studies in the Drosophila wing spot test". Environmental and Molecular Mutagenesis. 43 (3): 196–203. Bibcode:2004EnvMM..43..196R. doi:10.1002/em.20010. ISSN 0893-6692. PMID 15065207. S2CID 24499111.
- ^ Carmona, Erico R.; Creus, Amadeu; Marcos, R. (January 2011). "Genotoxic effects of two nickel-compounds in somatic cells of Drosophila melanogaster". Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 718 (1–2): 33–37. Bibcode:2011MRGTE.718...33C. doi:10.1016/j.mrgentox.2010.10.008. PMID 21073980.
- ^ Costa, Wender Ferreira; Oliveira, Alaide Braga de; Nepomuceno, Júlio César (2010). "Genotoxicity of lapachol evaluated by wing spot test of Drosophila melanogaster". Genetics and Molecular Biology. 33 (3): 558–563. doi:10.1590/S1415-47572010005000070. ISSN 1415-4757. PMC 3036112. PMID 21637432.
- ^ Téllez, María Guadalupe Ordaz; Rodríguez, Horacio Bárcenas; Olivares, Guillermo Quevedo; Sortibrán, América Nitxin Castañeda; Cetto, Adolfo Andrade; Rodríguez-Arnaiz, Rosario (April 2007). "A phytotherapeutic extract of Equisetum myriochaetum is not genotoxic either in the in vivo wing somatic test of Drosophila or in the in vitro human micronucleus test". Journal of Ethnopharmacology. 111 (1): 182–189. doi:10.1016/j.jep.2006.11.011. PMID 17184944.
- ^ Toledo, Varenka Martínez; Tellez, María Guadalupe Ordáz; Sortibrán, América Nitxin Castañeda; Andrade-Cetto, Adolfo; Rodríguez-Arnaiz, Rosario (February 2008). "Genotoxicity testing of Cecropia obtusifolia extracts in two in vivo assays: The wing somatic mutation and recombination test of Drosophila and the human cytokinesis-block micronucleus test". Journal of Ethnopharmacology. 116 (1): 58–63. doi:10.1016/j.jep.2007.10.041. PMID 18078727.
- ^ García Sar, Daniel; Aguado, Leticia; Montes Bayón, María; Comendador, Miguel A.; Blanco González, Elisa; Sanz-Medel, Alfredo; Sierra, Luisa María (January 2012). "Relationships between cisplatin-induced adducts and DNA strand-breaks, mutation and recombination in vivo in somatic cells of Drosophila melanogaster, under different conditions of nucleotide excision repair". Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 741 (1–2): 81–88. Bibcode:2012MRGTE.741...81G. doi:10.1016/j.mrgentox.2011.11.005. PMID 22108251.
- ^ Yüksel, Muammer; Sarıkaya, Rabia; Bostanci, Neslihan (October 2010). "Genotoxic evaluation of antiepileptic drugs by Drosophila somatic mutation and recombination test". Food and Chemical Toxicology. 48 (10): 2682–2687. doi:10.1016/j.fct.2010.06.040. PMID 20600525.
- ^ Sotibrán, América Nitxin Castañeda; Ordaz-Téllez, María Guadalupe; Rodríguez-Arnaiz, Rosario (November 2011). "Flavonoids and oxidative stress in Drosophila melanogaster". Mutation Research/Genetic Toxicology and Environmental Mutagenesis. 726 (1): 60–65. Bibcode:2011MRGTE.726...60S. doi:10.1016/j.mrgentox.2011.08.005. PMID 21907306.
- ^ García-Quispes, Wilser A.; Carmona, Erico R.; Creus, Amadeu; Marcos, Ricardo (May 2009). "Genotoxic evaluation of two halonitromethane disinfection by-products in the Drosophila wing-spot test". Chemosphere. 75 (7): 906–909. Bibcode:2009Chmsp..75..906G. doi:10.1016/j.chemosphere.2009.01.007. PMID 19215959.
- ^ Dihl, Rafael Rodrigues; da Silva, Carla Grazielli Azevedo; Amaral, Viviane Souza do; Reguly, Maria Luiza; de Andrade, Heloísa Helena Rodrigues (January 2008). "Mutagenic and recombinagenic activity of airborne particulates, PM10 and TSP, organic extracts in the Drosophila wing-spot test". Environmental Pollution. 151 (1): 47–52. Bibcode:2008EPoll.151...47D. doi:10.1016/j.envpol.2007.03.008. PMID 17478021.