Van der Corput's method

(Redirected from Exponent pairs)

In mathematics, van der Corput's method generates estimates for exponential sums. The method applies two processes, the van der Corput processes A and B which relate the sums into simpler sums which are easier to estimate.

The processes apply to exponential sums of the form

where f is a sufficiently smooth function and e(x) denotes exp(2πix).

Process A

edit

To apply process A, write the first difference fh(x) for f(x+h)−f(x).

Assume there is Hba such that

 

Then

 

Process B

edit

Process B transforms the sum involving f into one involving a function g defined in terms of the derivative of f. Suppose that f' is monotone increasing with f'(a) = α, f'(b) = β. Then f' is invertible on [α,β] with inverse u say. Further suppose f'' ≥ λ > 0. Write

 

We have

 

Applying Process B again to the sum involving g returns to the sum over f and so yields no further information.

Exponent pairs

edit

The method of exponent pairs gives a class of estimates for functions with a particular smoothness property. Fix parameters N,R,T,s,δ. We consider functions f defined on an interval [N,2N] which are R times continuously differentiable, satisfying

 

uniformly on [a,b] for 0 ≤ r < R.

We say that a pair of real numbers (k,l) with 0 ≤ k ≤ 1/2 ≤ l ≤ 1 is an exponent pair if for each σ > 0 there exists δ and R depending on k,l,σ such that

 

uniformly in f.

By Process A we find that if (k,l) is an exponent pair then so is  . By Process B we find that so is  .

A trivial bound shows that (0,1) is an exponent pair.

The set of exponents pairs is convex.

It is known that if (k,l) is an exponent pair then the Riemann zeta function on the critical line satisfies

 

where  .

The exponent pair conjecture states that for all ε > 0, the pair (ε,1/2+ε) is an exponent pair. This conjecture implies the Lindelöf hypothesis.

References

edit
  • Ivić, Aleksandar (1985). The Riemann zeta-function. The theory of the Riemann zeta-function with applications. New York etc.: John Wiley & Sons. ISBN 0-471-80634-X. Zbl 0556.10026.
  • Montgomery, Hugh L. (1994). Ten lectures on the interface between analytic number theory and harmonic analysis. Regional Conference Series in Mathematics. Vol. 84. Providence, RI: American Mathematical Society. ISBN 0-8218-0737-4. Zbl 0814.11001.
  • Sándor, József; Mitrinović, Dragoslav S.; Crstici, Borislav, eds. (2006). Handbook of number theory I. Dordrecht: Springer-Verlag. ISBN 1-4020-4215-9. Zbl 1151.11300.