Theory of mind

(Redirected from False Belief Task)

In psychology, theory of mind refers to the capacity to understand other people by ascribing mental states to them. A theory of mind includes the understanding that others' beliefs, desires, intentions, emotions, and thoughts may be different from one's own.[1] Possessing a functional theory of mind is crucial for success in everyday human social interactions. People utilize a theory of mind when analyzing, judging, and inferring others' behaviors. The discovery and development of theory of mind primarily came from studies done with animals and infants.[2] Factors including drug and alcohol consumption, language development, cognitive delays, age, and culture can affect a person's capacity to display theory of mind. Having a theory of mind is similar to but not identical with having the capacity for empathy[3] or sympathy.

It has been proposed that deficits in theory of mind may occur in people with autism,[5] anorexia nervosa,[6] schizophrenia, dysphoria, cocaine addiction,[7] and brain damage caused by alcohol's neurotoxicity.[8][9] Neuroimaging shows that the medial prefrontal cortex (mPFC), the posterior superior temporal sulcus (pSTS), the precuneus, and the amygdala are associated with theory of mind tasks. Patients with frontal lobe or temporoparietal junction lesions find some theory of mind tasks difficult. One's theory of mind develops in childhood as the prefrontal cortex develops. It has been argued that children in a culture of collectivism develop knowledge access earlier and understand diverse beliefs later than Western children in a culture of individualism.[10]

Definition

edit

The "theory of mind" is described as a theory, because the behavior of the other person, such as their statements and expressions, is the only thing being directly observed; no one has direct access to the mind of another, and the existence and nature of the mind must be inferred.[11] It is typically assumed others have minds analogous to one's own; this assumption is based on three reciprocal social interactions, as observed in joint attention,[2] the functional use of language,[12] and the understanding of others' emotions and actions.[13] Theory of mind allows one to attribute thoughts, desires, and intentions to others, to predict or explain their actions, and to posit their intentions. It enables one to understand that mental states can be the cause of—and can be used to explain and predict—the behavior of others.[11] Being able to attribute mental states to others and understanding them as causes of behavior implies, in part, one must be able to conceive of the mind as a "generator of representations".[14] If a person does not have a mature theory of mind, it may be a sign of cognitive or developmental impairment.[15]

Theory of mind appears to be an innate potential ability in humans that requires social and other experience over many years for its full development. Different people may develop more or less effective theories of mind. Neo-Piagetian theories of cognitive development maintain that theory of mind is a byproduct of a broader hypercognitive ability of the human mind to register, monitor, and represent its own functioning.[16]

Empathy—the recognition and understanding of the states of mind of others, including their beliefs, desires, and particularly emotions—is a related concept. Empathy is often characterized as the ability to "put oneself into another's shoes". Recent neuro-ethological studies of animal behavior suggest that rodents may exhibit empathetic abilities.[17] While empathy is known as emotional perspective-taking, theory of mind is defined as cognitive perspective-taking.[18]

Research on theory of mind, in humans and animals, adults and children, normally and atypically developing, has grown rapidly in the years since Premack and Guy Woodruff's 1978 paper, "Does the chimpanzee have a theory of mind?".[11] The field of social neuroscience has also begun to address this debate by imaging the brains of humans while they perform tasks that require the understanding of an intention, belief, or other mental state in others.

An alternative account of theory of mind is given in operant psychology and provides empirical evidence for a functional account of both perspective-taking and empathy. The most developed operant approach is founded on research on derived relational responding[jargon] and is subsumed within relational frame theory. Derived relational responding relies on the ability to identify derived relations, or relationships between stimuli that are not directly learned or reinforced; for example, if "snake" is related to "danger" and "danger" is related to "fear", people may know to fear snakes even without learning an explicit connection between snakes and fear.[19] According to this view, empathy and perspective-taking comprise a complex set of derived relational abilities based on learning to discriminate and respond verbally to ever more complex relations between self, others, place, and time, and through established relations.[20][21][22]

Philosophical and psychological roots

edit

Discussions of theory of mind have their roots in philosophical debate from the time of René Descartes' Second Meditation, which set the foundations for considering the science of the mind.

Two contrasting approaches in the philosophical literature to theory of mind are theory-theory and simulation theory.[23] The theory-theorist posits a veritable theory—"folk psychology"—that people use to reason about others' minds. Such a theory is developed automatically and innately, by concepts and rules we have for ourselves, though it is instantiated through social interactions.[24] It is also closely related to person perception and attribution theory from social psychology.

It is common and intuitive to assume that others are minded. People anthropomorphize non-human animals, inanimate objects, and even natural phenomena. Daniel Dennett referred to this tendency as taking an "intentional stance" toward things: we assume they have intentions, to help predict their future behavior.[25] However, there is an important distinction between taking an "intentional stance" toward something and entering a "shared world" with it. The intentional stance is a functional relationship, describing the use of a theory due to its practical utility, rather than the accuracy of its representation of the world. As such, it is something people resort to during interpersonal interactions. A shared world is directly perceived and its existence structures reality itself for the perceiver. It is not just a lens, through which the perceiver views the world; it in many ways constitutes the cognition, as both its object and the blueprint used to structure perception into understanding.

The philosophical roots of another perspective, the relational frame theory (RFT) account of theory of mind, arise from contextual psychology, which refers to the study of organisms (both human and non-human) interacting in and with a historical and current situational context. It is an approach based on contextualism, a philosophy in which any event is interpreted as an ongoing act inseparable from its current and historical context and in which a radically functional approach to truth and meaning is adopted. As a variant of contextualism, RFT focuses on the construction of practical, scientific knowledge. This scientific form of contextual psychology is virtually synonymous with the philosophy of operant psychology.[26]

Development

edit

The study of which animals are capable of attributing knowledge and mental states to others, as well as the development of this ability in human ontogeny and phylogeny, identifies several behavioral precursors to theory of mind. Understanding attention, understanding of others' intentions, and imitative experience with others are hallmarks of a theory of mind that may be observed early in the development of what later becomes a full-fledged theory.

Simon Baron-Cohen proposed that infants' understanding of attention in others acts as a critical precursor to the development of theory of mind.[2] Understanding attention involves understanding that seeing can be directed selectively as attention, that the looker assesses the seen object as "of interest", and that seeing can induce beliefs. A possible illustration of theory of mind in infants is joint attention. Joint attention refers to when two people look at and attend to the same thing. Parents often use the act of pointing to prompt infants to engage in joint attention; understanding this prompt requires that infants take into account another person's mental state and understand that the person notices an object or finds it of interest. Baron-Cohen speculates that the inclination to spontaneously reference an object in the world as of interest, via pointing, ("Proto declarative pointing") and to likewise appreciate the directed attention of another, may be the underlying motive behind all human communication.[2]

Understanding others' intentions is another critical precursor to understanding other minds because intentionality is a fundamental feature of mental states and events. The "intentional stance" was defined by Daniel Dennett[27] as an understanding that others' actions are goal-directed and arise from particular beliefs or desires. Both two and three-year-old children could discriminate when an experimenter intentionally or accidentally marked a box with stickers.[28] Even earlier in development, Andrew N. Meltzoff found that 18-month-old infants could perform target tasks involving the manipulation of objects that adult experimenters attempted and failed, suggesting the infants could represent the object-manipulating behavior of adults as involving goals and intentions.[29] While attribution of intention and knowledge is investigated in young humans and nonhuman animals to detect precursors to a theory of mind, Gagliardi et al. have pointed out that even adult humans do not always act in a way consistent with an attributional perspective (i.e., based on attribution of knowledge to others).[30] In their experiment, adult human subjects attempted to choose the container baited with a small object from a selection of four containers when guided by confederates who could not see which container was baited.

Research in developmental psychology suggests that an infant's ability to imitate others lies at the origins of both theory of mind and other social-cognitive achievements like perspective-taking and empathy.[31] According to Meltzoff, the infant's innate understanding that others are "like me" allows them to recognize the equivalence between the physical and mental states apparent in others and those felt by the self. For example, the infant uses their own experiences, orienting their head and eyes toward an object of interest to understand the movements of others who turn toward an object; that is, they will generally attend to objects of interest or significance. Some researchers in comparative disciplines have hesitated to put too much weight on imitation as a critical precursor to advanced human social-cognitive skills like mentalizing and empathizing, especially if true imitation is no longer employed by adults. A test of imitation by Alexandra Horowitz found that adult subjects imitated an experimenter demonstrating a novel task far less closely than children did. Horowitz points out that the precise psychological state underlying imitation is unclear and cannot, by itself, be used to draw conclusions about the mental states of humans.[32]

While much research has been done on infants, theory of mind develops continuously throughout childhood and into late adolescence as the synapses in the prefrontal cortex develop. The prefrontal cortex is thought to be involved in planning and decision-making.[33] Children seem to develop theory of mind skills sequentially. The first skill to develop is the ability to recognize that others have diverse desires. Children are able to recognize that others have diverse beliefs soon after. The next skill to develop is recognizing that others have access to different knowledge bases. Finally, children are able to understand that others may have false beliefs and that others are capable of hiding emotions. While this sequence represents the general trend in skill acquisition, it seems that more emphasis is placed on some skills in certain cultures, leading to more valued skills to develop before those that are considered not as important. For example, in individualistic cultures such as the United States, a greater emphasis is placed on the ability to recognize that others have different opinions and beliefs. In a collectivistic culture, such as China, this skill may not be as important and therefore may not develop until later.[34]

Language

edit

There is evidence that the development of theory of mind is closely intertwined with language development in humans. One meta-analysis showed a moderate to strong correlation (r = 0.43) between performance on theory of mind and language tasks.[35] Both language and theory of mind begin to develop around the same time in children (between ages two and five), but many other abilities develop during this same time period as well, and they do not produce such high correlations with one another nor with theory of mind.

Pragmatic theories of communication assume that infants must possess an understanding of beliefs and mental states of others to infer the communicative content that proficient language users intend to convey.[36] Since spoken phrases can have different meanings depending on context, theory of mind can play a crucial role in understanding the intentions of others and inferring the meaning of words. Some empirical results suggest that even 13-month-old infants have an early capacity for communicative mind-reading that enables them to infer what relevant information is transferred between communicative partners, which implies that human language relies at least partially on theory of mind skills.[37]

Carol A. Miller posed further possible explanations for this relationship. Perhaps the extent of verbal communication and conversation involving children in a family could explain theory of mind development. Such language exposure could help introduce a child to the different mental states and perspectives of others.[38] Empirical findings indicate that participation in family discussion predicts scores on theory of mind tasks,[39] and that deaf children who have hearing parents and may not be able to communicate with their parents much during early years of development tend to score lower on theory of mind tasks.[40]

Another explanation of the relationship between language and theory of mind development has to do with a child's understanding of mental-state words such as "think" and "believe". Since a mental state is not something that one can observe from behavior, children must learn the meanings of words denoting mental states from verbal explanations alone, requiring knowledge of the syntactic rules, semantic systems, and pragmatics of a language.[38] Studies have shown that understanding of these mental state words predicts theory of mind in four-year-olds.[41]

A third hypothesis is that the ability to distinguish a whole sentence ("Jimmy thinks the world is flat") from its embedded complement ("the world is flat") and understand that one can be true while the other can be false is related to theory of mind development. Recognizing these complements as being independent of one another is a relatively complex syntactic skill and correlates with increased scores on theory of mind tasks in children.[42]

There is also evidence that the areas of the brain responsible for language and theory of mind are closely connected. The temporoparietal junction (TPJ) is involved in the ability to acquire new vocabulary, as well as to perceive and reproduce words. The TPJ also contains areas that specialize in recognizing faces, voices, and biological motion, and in theory of mind. Since all of these areas are located so closely together, it is reasonable to suspect that they work together. Studies have reported an increase in activity in the TPJ when patients are absorbing information through reading or images regarding other peoples' beliefs but not while observing information about physical control stimuli.[43]

Theory of mind in adults

edit

Neurotypical adults have theory of mind concepts that they developed as children (concepts such as belief, desire, knowledge, and intention). They use these concepts to meet the diverse demands of social life, ranging from snap decisions about how to trick an opponent in a competitive game, to keeping up with who knows what in a fast-moving conversation, to judging the guilt or innocence of the accused in a court of law.[44]

Boaz Keysar, Dale Barr, and colleagues found that adults often failed to use their theory of mind abilities to interpret a speaker's message, and acted as if unaware that the speaker lacked critical knowledge about a task. In one study, a confederate instructed adult participants to rearrange objects, some of which were not visible to the confederate, as part of a communication game. Only objects that were visible to both the confederate and the participant were part of the game. Despite knowing that the confederate could not see some of the objects, a third of the participants still tried to move those objects.[45] Other studies show that adults are prone to egocentric biases, with which they are influenced by their own beliefs, knowledge, or preferences when judging those of other people, or that they neglect other people's perspectives entirely.[46] There is also evidence that adults with greater memory, inhibitory capacity, and motivation are more likely to use their theory of mind abilities.[47]

In contrast, evidence about indirect effects of thinking about other people's mental states suggests that adults may sometimes use their theory of mind automatically. Agnes Kovacs and colleagues measured the time it took adults to detect the presence of a ball as it was revealed from behind an occluder. They found that adults' speed of response was influenced by whether another person (the "agent") in the scene thought there was a ball behind the occluder, even though adults were not asked to pay attention to what the agent thought.[48]

Dana Samson and colleagues measured the time it took adults to judge the number of dots on the wall of a room. They found that adults responded more slowly when another person standing in the room happened to see fewer dots than they did, even when they had never been asked to pay attention to what the person could see.[49] It has been questioned whether these "altercentric biases" truly reflect automatic processing of what another person is thinking or seeing or, instead, reflect attention and memory effects cued by the other person, but not involving any representation of what they think or see.[50]

Different theories seek to explain such results. If theory of mind is automatic, this would help explain how people keep up with the theory of mind demands of competitive games and fast-moving conversations. It might also explain evidence that human infants and some non-human species sometimes appear capable of theory of mind, despite their limited resources for memory and cognitive control.[51] If theory of mind is effortful and not automatic, on the other hand, this explains why it feels effortful to decide whether a defendant is guilty or whether a negotiator is bluffing. Economy of effort would help explain why people sometimes neglect to use their theory of mind.

Ian Apperly and Stephen Butterfill suggested that people have "two systems" for theory of mind,[52] in common with "two systems" accounts in many other areas of psychology.[53] In this account, "system 1" is cognitively efficient and enables theory of mind for a limited but useful set of circumstances. "System 2" is cognitively effortful, but enables much more flexible theory of mind abilities. Philosopher Peter Carruthers disagrees, arguing that the same core theory of mind abilities can be used in both simple and complex ways.[54] The account has been criticized by Celia Heyes who suggests that "system 1" theory of mind abilities do not require representation of mental states of other people, and so are better thought of as "sub-mentalizing".[50]

Aging

edit

In older age, theory of mind capacities decline, irrespective of how exactly they are tested.[55] However, the decline in other cognitive functions is even stronger, suggesting that social cognition is better preserved. In contrast to theory of mind, empathy shows no impairments in aging.[56][57]

There are two kinds of theory of mind representations: cognitive (concerning mental states, beliefs, thoughts, and intentions) and affective (concerning the emotions of others). Cognitive theory of mind is further separated into first order (e.g., I think she thinks that) and second order (e.g. he thinks that she thinks that). There is evidence that cognitive and affective theory of mind processes are functionally independent from one another.[58] In studies of Alzheimer's disease, which typically occurs in older adults, patients display impairment with second order cognitive theory of mind, but usually not with first order cognitive or affective theory of mind. However, it is difficult to discern a clear pattern of theory of mind variation due to age. There have been many discrepancies in the data collected thus far, likely due to small sample sizes and the use of different tasks that only explore one aspect of theory of mind. Many researchers suggest that theory of mind impairment is simply due to the normal decline in cognitive function.[59]

Cultural variations

edit

Researchers propose that five key aspects of theory of mind develop sequentially for all children between the ages of three and five:[60] diverse desires, diverse beliefs, knowledge access, false beliefs, and hidden emotions.[60] Australian, American, and European children acquire theory of mind in this exact order,[10] and studies with children in Canada, India, Peru, Samoa, and Thailand indicate that they all pass the false belief task at around the same time, suggesting that children develop theory of mind consistently around the world.[61]

However, children from Iran and China develop theory of mind in a slightly different order. Although they begin the development of theory of mind around the same time, toddlers from these countries understand knowledge access before Western children but take longer to understand diverse beliefs.[10][15] Researchers believe this swap in the developmental order is related to the culture of collectivism in Iran and China, which emphasizes interdependence and shared knowledge as opposed to the culture of individualism in Western countries, which promotes individuality and accepts differing opinions. Because of these different cultural values, Iranian and Chinese children might take longer to understand that other people have different beliefs and opinions. This suggests that the development of theory of mind is not universal and solely determined by innate brain processes but also influenced by social and cultural factors.[10]

Historiography

edit

Theory of mind can help historians to more properly understand historical figures' characters, for example Thomas Jefferson. Emancipationists like Douglas L. Wilson and scholars at the Thomas Jefferson Foundation view Jefferson as an opponent of slavery all his life, noting Jefferson's attempts within the limited range of options available to him to undermine slavery, his many attempts at abolition legislation, the manner in which he provided for slaves, and his advocacy of their more humane treatment. This view contrasts with that of revisionists like Paul Finkelman, who criticizes Jefferson for racism, slavery, and hypocrisy. Emancipationist views on this hypocrisy recognize that if he tried to be true to his word, it would have alienated his fellow Virginians. In another example, Franklin D. Roosevelt did not join NAACP leaders in pushing for federal anti-lynching legislation, as he believed that such legislation was unlikely to pass and that his support for it would alienate Southern congressmen, including many of Roosevelt's fellow Democrats.

Empirical investigation

edit

Whether children younger than three or four years old have a theory of mind is a topic of debate among researchers. It is a challenging question, due to the difficulty of assessing what pre-linguistic children understand about others and the world. Tasks used in research into the development of theory of mind must take into account the umwelt[62] of the pre-verbal child.

False-belief task

edit

One of the most important milestones in theory of mind development is the ability to attribute false belief: in other words, to understand that other people can believe things which are not true. To do this, it is suggested, one must understand how knowledge is formed, that people's beliefs are based on their knowledge, that mental states can differ from reality, and that people's behavior can be predicted by their mental states. Numerous versions of false-belief task have been developed, based on the initial task created by Wimmer and Perner (1983).[63]

In the most common version of the false-belief task (often called the Sally-Anne test), children are told a story about Sally and Anne. Sally has a marble, which she places into her basket, and then leaves the room. While she is out of the room, Anne takes the marble from the basket and puts it into the box. The child being tested is then asked where Sally will look for the marble once she returns. The child passes the task if she answers that Sally will look in the basket, where Sally put the marble; the child fails the task if she answers that Sally will look in the box. To pass the task, the child must be able to understand that another's mental representation of the situation is different from their own, and the child must be able to predict behavior based on that understanding.[64] Another example depicts a boy who leaves chocolate on a shelf and then leaves the room. His mother puts it in the fridge. To pass the task, the child must understand that the boy, upon returning, holds the false belief that his chocolate is still on the shelf.[65]

The results of research using false-belief tasks have been called into question: most typically developing children are able to pass the tasks from around age four.[66] Yet early studies asserted that 80% of children diagnosed with autism were unable to pass this test, while children with other disabilities like Down syndrome were able to.[67] However this assertion could not be replicated by later studies.[68][69][70][71] It instead was concluded that children fail these tests due to a lack of understanding of extraneous processes and a basic lack of mental processing capabilities.[72]

Adults may also struggle with false beliefs, for instance when they show hindsight bias.[73] In one experiment, adult subjects who were asked for an independent assessment were unable to disregard information on actual outcome. Also in experiments with complicated situations, when assessing others' thinking, adults can fail to correctly disregard certain information that they have been given.[65]

Unexpected contents

edit

Other tasks have been developed to try to extend the false-belief task. In the "unexpected contents" or "smarties" task, experimenters ask children what they believe to be the contents of a box that looks as though it holds Smarties. After the child guesses "Smarties", it is shown that the box in fact contained pencils. The experimenter then re-closes the box and asks the child what she thinks another person, who has not been shown the true contents of the box, will think is inside. The child passes the task if he/she responds that another person will think that "Smarties" exist in the box, but fails the task if she responds that another person will think that the box contains pencils. Gopnik & Astington found that children pass this test at age four or five years.[74] Though the use of such implicit tests has yet to reach a consensus on their validity and reproducibility of study results.[75]

Other tasks

edit

The "false-photograph" task[76] also measures theory of mind development. In this task, children must reason about what is represented in a photograph that differs from the current state of affairs. Within the false-photograph task, either a location or identity change exists.[77] In the location-change task, the examiner puts an object in one location (e.g. chocolate in an open green cupboard), whereupon the child takes a Polaroid photograph of the scene. While the photograph is developing, the examiner moves the object to a different location (e.g. a blue cupboard), allowing the child to view the examiner's action. The examiner asks the child two control questions: "When we first took the picture, where was the object?" and "Where is the object now?" The subject is also asked a "false-photograph" question: "Where is the object in the picture?" The child passes the task if he/she correctly identifies the location of the object in the picture and the actual location of the object at the time of the question. However, the last question might be misinterpreted as "Where in this room is the object that the picture depicts?" and therefore some examiners use an alternative phrasing.[78]

To make it easier for animals, young children, and individuals with classical autism to understand and perform theory of mind tasks, researchers have developed tests in which verbal communication is de-emphasized: some whose administration does not involve verbal communication on the part of the examiner, some whose successful completion does not require verbal communication on the part of the subject, and some that meet both of those standards. One category of tasks uses a preferential-looking paradigm, with looking time as the dependent variable. For instance, nine-month-old infants prefer looking at behaviors performed by a human hand over those made by an inanimate hand-like object.[79] Other paradigms look at rates of imitative behavior, the ability to replicate and complete unfinished goal-directed acts,[29] and rates of pretend play.[80]

Early precursors

edit

Research on the early precursors of theory of mind has invented ways to observe preverbal infants' understanding of other people's mental states, including perception and beliefs. Using a variety of experimental procedures, studies show that infants from their first year of life have an implicit understanding of what other people see[81] and what they know.[82][83] A popular paradigm used to study infants' theory of mind is the violation-of-expectation procedure, which exploits infants' tendency to look longer at unexpected and surprising events compared to familiar and expected events. The amount of time they look at an event gives researchers an indication of what infants might be inferring, or their implicit understanding of events. One study using this paradigm found that 16-month-olds tend to attribute beliefs to a person whose visual perception was previously witnessed as being "reliable", compared to someone whose visual perception was "unreliable". Specifically, 16-month-olds were trained to expect a person's excited vocalization and gaze into a container to be associated with finding a toy in the reliable-looker condition or an absence of a toy in the unreliable-looker condition. Following this training phase, infants witnessed, in an object-search task, the same persons searching for a toy either in the correct or incorrect location after they both witnessed the location of where the toy was hidden. Infants who experienced the reliable looker were surprised and therefore looked longer when the person searched for the toy in the incorrect location compared to the correct location. In contrast, the looking time for infants who experienced the unreliable looker did not differ for either search locations. These findings suggest that 16-month-old infants can differentially attribute beliefs about a toy's location based on the person's prior record of visual perception.[84]

Methodological problems

edit

With the methods used to test theory of mind, it has been experimentally shown that very simple robots that only react by reflexes and are not built to have any complex cognition at all can pass the tests for having theory of mind abilities that psychology textbooks assume to be exclusive to humans older than four or five years. Whether such a robot passes the test is influenced by completely non-cognitive factors such as placement of objects and the structure of the robot body influencing how the reflexes are conducted. It has therefore been suggested that theory of mind tests may not actually test cognitive abilities.[85]

Furthermore, early research into theory of mind in autistic children[67] is argued to constitute epistemological violence due to implicit or explicit negative and universal conclusions about autistic individuals being drawn from empirical data that viably supports other (non-universal) conclusions.[86]

Deficits

edit

Theory of mind impairment, or mind-blindness, describes a difficulty someone would have with perspective-taking. Individuals with theory of mind impairment struggle to see phenomena from any other perspective than their own.[87] Individuals who experience a theory of mind deficit have difficulty determining the intentions of others, lack understanding of how their behavior affects others, and have a difficult time with social reciprocity.[88] Theory of mind deficits have been observed in people with autism spectrum disorders, schizophrenia, nonverbal learning disorder and along with people under the influence of alcohol and narcotics, sleep-deprived people, and people who are experiencing severe emotional or physical pain. Theory of mind deficits have also been observed in deaf children who are late signers (i.e. are born to hearing parents), but such a deficit is due to the delay in language learning, not any cognitive deficit, and therefore disappears once the child learns sign language.[89]

Autism

edit

In 1985 Simon Baron-Cohen, Alan M. Leslie, and Uta Frith suggested that children with autism do not employ theory of mind and that autistic children have particular difficulties with tasks requiring the child to understand another person's beliefs.[67] These difficulties persist when children are matched for verbal skills and they have been taken as a key feature of autism.[90] Although in a 2019 review, Gernsbacher and Yergeau argued that "the claim that autistic people lack a theory of mind is empirically questionable", as there have been numerous failed replications of classic ToM studies and the meta-analytical effect sizes of such replications were minimal to small.[68]

Many individuals classified as autistic have severe difficulty assigning mental states to others, and some seem to lack theory of mind capabilities.[91] Researchers who study the relationship between autism and theory of mind attempt to explain the connection in a variety of ways. One account assumes that theory of mind plays a role in the attribution of mental states to others and in childhood pretend play.[92] According to Leslie,[92] theory of mind is the capacity to mentally represent thoughts, beliefs, and desires, regardless of whether the circumstances involved are real. This might explain why some autistic individuals show extreme deficits in both theory of mind and pretend play. However, Hobson proposes a social-affective justification,[93] in which deficits in theory of mind in autistic people result from a distortion in understanding and responding to emotions. He suggests that typically developing individuals, unlike autistic individuals, are born with a set of skills (such as social referencing ability) that later lets them comprehend and react to other people's feelings. Other scholars emphasize that autism involves a specific developmental delay, so that autistic children vary in their deficiencies, because they experience difficulty in different stages of growth. Very early setbacks can alter proper advancement of joint-attention behaviors, which may lead to a failure to form a full theory of mind.[91]

It has been speculated that theory of mind exists on a continuum as opposed to the traditional view of a discrete presence or absence.[80] While some research has suggested that some autistic populations are unable to attribute mental states to others,[2] recent evidence points to the possibility of coping mechanisms that facilitate the attribution of mental states.[94] A binary view regarding theory of mind contributes to the stigmatization of autistic adults who do possess perspective-taking capacity, as the assumption that autistic people do not have empathy can become a rationale for dehumanization.[95]

Tine et al. report that autistic children score substantially lower on measures of social theory of mind (i.e., "reasoning about others' mental states", p. 1) in comparison to children diagnosed with Asperger syndrome.[96]

Generally, children with more advanced theory of mind abilities display more advanced social skills, greater adaptability to new situations, and greater cooperation with others. As a result, these children are typically well-liked. However, "children may use their mind-reading abilities to manipulate, outwit, tease, or trick their peers."[97] Individuals possessing inferior theory of mind skills, such as children with autism spectrum disorder, may be socially rejected by their peers since they are unable to communicate effectively. Social rejection has been proven to negatively impact a child's development and can put the child at greater risk of developing depressive symptoms.[98]

Peer-mediated interventions (PMI) are a school-based treatment approach for children and adolescents with autism spectrum disorder in which peers are trained to be role models in order to promote social behavior. Laghi et al. studied whether analysis of prosocial (nice) and antisocial (nasty) theory-of-mind behaviors could be used, in addition to teacher recommendations, to select appropriate candidates for PMI programs. Selecting children with advanced theory-of-mind skills who use them in prosocial ways will theoretically make the program more effective. While the results indicated that analyzing the social uses of theory of mind of possible candidates for a PMI program may increase the program's efficacy, it may not be a good predictor of a candidate's performance as a role model.[33]

A 2014 Cochrane review on interventions based on theory of mind found that such a theory could be taught to individuals with autism but claimed little evidence of skill maintenance, generalization to other settings, or development effects on related skills.[99]

Some 21st century studies have shown that the results of some studies of theory of mind tests on autistic people may be misinterpreted based on the double empathy problem, which proposes that rather than autistic people specifically having trouble with theory of mind, autistic people and non-autistic people have equal difficulty understanding one-another due to their neurological differences.[100] Studies have shown that autistic adults perform better in theory of mind tests when paired with other autistic adults[101] as well as possibly autistic close family members.[102] Academics who acknowledge the double empathy problem also propose that it is likely autistic people understand non-autistic people to a higher degree than vice-versa, due to the necessity of functioning in a non-autistic society.[103]

Psychopathy

edit

Psychopathy is another deficit that is of large importance when discussing theory of mind. While psychopathic individuals show impaired emotional behavior including a lack of emotional responsiveness to others and deficient empathy, as well as impaired social behavior, there are many controversies regarding psychopathic individuals' theory of mind.[104] Many different studies provide contradictory information on a correlation between theory of mind impairment and psychopathic individuals.

There have been some speculations made about the similarities between individuals with autism and psychopathic individuals in the theory of mind performance. In this study in 2008, the Happé's advanced test of theory of mind was presented to a group of 25 psychopaths, and 25 non-psychopaths incarcerated. This test showed that there wasn’t a difference in the performance of the task for the psychopaths and non-psychopaths. However, they were able to see that the psychopaths were performing significantly better than the most highly able adult autistic population.[105] This shows that there is not a similarity between individuals with autism and psychopathic individuals.

There have been repetitive suggestions regarding the possibility that a deficient or biased grasp of others’ mental states, or theory of mind, could potentially contribute to antisocial behavior, aggression, and psychopathy.[106] In one study named ‘Reading the Mind in the Eyes’, the participants view photographs of an individual’s eye and had to attribute a mental state, or emotion, to the individual. This is an interesting test because Magnetic resonance imaging studies showed that this task produced increased activity in the dorsolateral prefrontal and the left medial frontal cortices, the superior temporal gyrus, and the left amygdala. There is extensive literature suggesting amygdala dysfunction in psychopathy however, this test shows that both groups of psychopathic and non-psychopathic adults performed equally well on the test.[106] Thus, disregarding that there isn’t Theory of Mind impairment in psychopathic individuals.

In another study using a systemic review and meta-analysis, data was gathered from 42 different studies and found that psychopathic traits are associated with impairment in the theory of mind task performance. This relationship was not regulated by age, population, psychopathy measurement (self-report versus clinical checklist) or theory of mind task type (cognitive versus affective).[107] This study used past studies to show that there is a relationship between psychopathic individuals and theory of mind impairments.

In 2009 a study was conducted to test whether impairment in the emotional aspects of theory of mind rather that the general theory of mind abilities may account for some of the impaired social behavior in psychopathy.[104] This study involved criminal offenders diagnosed with antisocial personality disorder who had high psychopathy features, participants with localized lesions in the orbitofrontal cortex, participants with non-frontal lesions, and healthy control subjects. Subjects were tested with a task that examines affective versus cognitive theory of mind. They found that the individuals with psychopathy and those with orbitofrontal cortex lesions were both impaired on the affective theory of mind but not in cognitive theory of mind when compared to the control group.[104]

Schizophrenia

edit

Individuals diagnosed with schizophrenia can show deficits in theory of mind. Mirjam Sprong and colleagues investigated the impairment by examining 29 different studies, with a total of over 1500 participants.[108] This meta-analysis showed significant and stable deficit of theory of mind in people with schizophrenia. They performed poorly on false-belief tasks, which test the ability to understand that others can hold false beliefs about events in the world, and also on intention-inference tasks, which assess the ability to infer a character's intention from reading a short story. Schizophrenia patients with negative symptoms, such as lack of emotion, motivation, or speech, have the most impairment in theory of mind and are unable to represent the mental states of themselves and of others. Paranoid schizophrenic patients also perform poorly because they have difficulty accurately interpreting others' intentions. The meta-analysis additionally showed that IQ, gender, and age of the participants do not significantly affect the performance of theory of mind tasks.[108]

Research suggests that impairment in theory of mind negatively affects clinical insight—the patient's awareness of their mental illness.[109] Insight requires theory of mind; a patient must be able to adopt a third-person perspective and see the self as others do.[110] A patient with good insight can accurately self-represent, by comparing himself with others and by viewing himself from the perspective of others.[109] Insight allows a patient to recognize and react appropriately to his symptoms. A patient who lacks insight does not realize that he has a mental illness, because of his inability to accurately self-represent. Therapies that teach patients perspective-taking and self-reflection skills can improve abilities in reading social cues and taking the perspective of another person.[109]

Research indicates that theory-of-mind deficit is a stable trait-characteristic rather than a state-characteristic of schizophrenia.[111] The meta-analysis conducted by Sprong et al. showed that patients in remission still had impairment in theory of mind. This indicates that the deficit is not merely a consequence of the active phase of schizophrenia.[108]

Schizophrenic patients' deficit in theory of mind impairs their interactions with others. Theory of mind is particularly important for parents, who must understand the thoughts and behaviors of their children and react accordingly. Dysfunctional parenting is associated with deficits in the first-order theory of mind, the ability to understand another person's thoughts, and in the second-order theory of mind, the ability to infer what one person thinks about another person's thoughts.[112] Compared with healthy mothers, mothers with schizophrenia are found to be more remote, quiet, self-absorbed, insensitive, unresponsive, and to have fewer satisfying interactions with their children.[112] They also tend to misinterpret their children's emotional cues, and often misunderstand neutral faces as negative.[112] Activities such as role-playing and individual or group-based sessions are effective interventions that help the parents improve on perspective-taking and theory of mind.[112] There is a strong association between theory of mind deficit and parental role dysfunction.

Alcohol use disorders

edit

Impairments in theory of mind, as well as other social-cognitive deficits, are commonly found in people who have alcohol use disorders, due to the neurotoxic effects of alcohol on the brain, particularly the prefrontal cortex.[8]

Depression and dysphoria

edit

Individuals in a major depressive episode, a disorder characterized by social impairment, show deficits in theory of mind decoding.[113] Theory of mind decoding is the ability to use information available in the immediate environment (e.g., facial expression, tone of voice, body posture) to accurately label the mental states of others. The opposite pattern, enhanced theory of mind, is observed in individuals vulnerable to depression, including those individuals with past major depressive disorder (MDD),[114] dysphoric individuals,[115] and individuals with a maternal history of MDD.[116]

Developmental language disorder

edit

Children diagnosed with developmental language disorder (DLD) exhibit much lower scores on reading and writing sections of standardized tests, yet have a normal nonverbal IQ. These language deficits can be any specific deficits in lexical semantics, syntax, or pragmatics, or a combination of multiple problems. Such children often exhibit poorer social skills than normally developing children, and seem to have problems decoding beliefs in others. A recent meta-analysis confirmed that children with DLD have substantially lower scores on theory of mind tasks compared to typically developing children.[117] This strengthens the claim that language development is related to theory of mind.

Brain mechanisms

edit

In neurotypical people

edit

Research on theory of mind in autism led to the view that mentalizing abilities are subserved by dedicated mechanisms that can—in some cases—be impaired while general cognitive function remains largely intact.

Neuroimaging research supports this view, demonstrating specific brain regions are consistently engaged during theory of mind tasks. Positron emission tomography (PET) research on theory of mind, using verbal and pictorial story comprehension tasks, identifies a set of brain regions including the medial prefrontal cortex (mPFC), and area around posterior superior temporal sulcus (pSTS), and sometimes precuneus and amygdala/temporopolar cortex.[118][119] Research on the neural basis of theory of mind has diversified, with separate lines of research focusing on the understanding of beliefs, intentions, and more complex properties of minds such as psychological traits.

Studies from Rebecca Saxe's lab at MIT, using a false-belief versus false-photograph task contrast aimed at isolating the mentalizing component of the false-belief task, have consistently found activation in the mPFC, precuneus, and temporoparietal junction (TPJ), right-lateralized.[120][121] In particular, Saxe et al. proposed that the right TPJ (rTPJ) is selectively involved in representing the beliefs of others.[122] Some debate exists, as the same rTPJ region is consistently activated during spatial reorienting of visual attention;[123][124] Jean Decety from the University of Chicago and Jason Mitchell from Harvard thus propose that the rTPJ subserves a more general function involved in both false-belief understanding and attentional reorienting, rather than a mechanism specialized for social cognition. However, it is possible that the observation of overlapping regions for representing beliefs and attentional reorienting may simply be due to adjacent, but distinct, neuronal populations that code for each. The resolution of typical fMRI studies may not be good enough to show that distinct/adjacent neuronal populations code for each of these processes. In a study following Decety and Mitchell, Saxe and colleagues used higher-resolution fMRI and showed that the peak of activation for attentional reorienting is approximately 6–10 mm above the peak for representing beliefs. Further corroborating that differing populations of neurons may code for each process, they found no similarity in the patterning of fMRI response across space.[125]

Using single-cell recordings in the human dorsomedial prefrontal cortex (dmPFC), researchers at MGH identified neurons that encode information about others' beliefs, which were distinct from self-beliefs, across different scenarios in a false-belief task. They further showed that these neurons could provide detailed information about others' beliefs, and could accurately predict these beliefs' verity.[126] These findings suggest a prominent role of distinct neuronal populations in the dmPFC in theory of mind complemented by the TPJ and pSTS.

Functional imaging also illuminates the detection of mental state information in animations of moving geometric shapes similar to those used in Heider and Simmel (1944),[127] which typical humans automatically perceive as social interactions laden with intention and emotion. Three studies found remarkably similar patterns of activation during the perception of such animations versus a random or deterministic motion control: mPFC, pSTS, fusiform face area (FFA), and amygdala were selectively engaged during the theory of mind condition.[128] Another study presented subjects with an animation of two dots moving with a parameterized degree of intentionality (quantifying the extent to which the dots chased each other), and found that pSTS activation correlated with this parameter.[129]

A separate body of research implicates the posterior superior temporal sulcus in the perception of intentionality in human action. This area is also involved in perceiving biological motion, including body, eye, mouth, and point-light display motion.[130] One study found increased pSTS activation while watching a human lift his hand versus having his hand pushed up by a piston (intentional versus unintentional action).[131] Several studies found increased pSTS activation when subjects perceive a human action that is incongruent with the action expected from the actor's context and inferred intention. Examples would be: a human performing a reach-to-grasp motion on empty space next to an object, versus grasping the object;[132] a human shifting eye gaze toward empty space next to a checkerboard target versus shifting gaze toward the target;[133] an unladen human turning on a light with his knee, versus turning on a light with his knee while carrying a pile of books;[134] and a walking human pausing as he passes behind a bookshelf, versus walking at a constant speed.[135] In these studies, actions in the "congruent" case have a straightforward goal, and are easy to explain in terms of the actor's intention. The incongruent actions, on the other hand, require further explanation (why would someone twist empty space next to a gear?), and apparently demand more processing in the STS. This region is distinct from the temporoparietal area activated during false belief tasks.[135] pSTS activation in most of the above studies was largely right-lateralized, following the general trend in neuroimaging studies of social cognition and perception. Also right-lateralized are the TPJ activation during false belief tasks, the STS response to biological motion, and the FFA response to faces.

Neuropsychological evidence supports neuroimaging results regarding the neural basis of theory of mind. Studies with patients with a lesion of the frontal lobes and the temporoparietal junction of the brain (between the temporal lobe and parietal lobe) report that they have difficulty with some theory of mind tasks.[136] This shows that theory of mind abilities are associated with specific parts of the human brain. However, the fact that the medial prefrontal cortex and temporoparietal junction are necessary for theory of mind tasks does not imply that these regions are specific to that function.[123][137] TPJ and mPFC may subserve more general functions necessary for Theory of Mind.

Research by Vittorio Gallese, Luciano Fadiga, and Giacomo Rizzolatti[138] shows that some sensorimotor neurons, referred to as mirror neurons and first discovered in the premotor cortex of rhesus monkeys, may be involved in action understanding. Single-electrode recording revealed that these neurons fired when a monkey performed an action, as well as when the monkey viewed another agent performing the same action. fMRI studies with human participants show brain regions (assumed to contain mirror neurons) that are active when one person sees another person's goal-directed action.[139] These data led some authors to suggest that mirror neurons may provide the basis for theory of mind in the brain, and to support simulation theory of mind reading.[140]

There is also evidence against a link between mirror neurons and theory of mind. First, macaque monkeys have mirror neurons but do not seem to have a 'human-like' capacity to understand theory of mind and belief. Second, fMRI studies of theory of mind typically report activation in the mPFC, temporal poles, and TPJ or STS,[141] but those brain areas are not part of the mirror neuron system. Some investigators, like developmental psychologist Andrew Meltzoff and neuroscientist Jean Decety, believe that mirror neurons merely facilitate learning through imitation and may provide a precursor to the development of theory of mind.[142] Others, like philosopher Shaun Gallagher, suggest that mirror-neuron activation, on a number of counts, fails to meet the definition of simulation as proposed by the simulation theory of mindreading.[143][144]

In autism

edit

Several neuroimaging studies have looked at the neural basis for theory of mind impairment in subjects with Asperger syndrome and high-functioning autism (HFA). The first PET study of theory of mind in autism (also the first neuroimaging study using a task-induced activation paradigm in autism) replicated a prior study in neurotypical individuals, which employed a story-comprehension task.[145] This study found displaced and diminished mPFC activation in subjects with autism. However, because the study used only six subjects with autism, and because the spatial resolution of PET imaging is relatively poor, these results should be considered preliminary.

A subsequent fMRI study scanned normally developing adults and adults with HFA while performing a "reading the mind in the eyes" task: viewing a photo of a human's eyes and choosing which of two adjectives better describes the person's mental state, versus a gender discrimination control.[146] The authors found activity in orbitofrontal cortex, STS, and amygdala in normal subjects, and found less amygdala activation and abnormal STS activation in subjects with autism.

A more recent PET study looked at brain activity in individuals with HFA and Asperger syndrome while viewing Heider-Simmel animations (see above) versus a random motion control.[147] In contrast to normally-developing subjects, those with autism showed little STS or FFA activation, and less mPFC and amygdala activation. Activity in extrastriate regions V3 and LO was identical across the two groups, suggesting intact lower-level visual processing in the subjects with autism. The study also reported less functional connectivity between STS and V3 in the autism group. However decreased temporal correlation between activity in STS and V3 would be expected simply from the lack of an evoked response in STS to intent-laden animations in subjects with autism. A more informative analysis would be to compute functional connectivity after regressing out evoked responses from all-time series.

A subsequent study, using the incongruent/congruent gaze-shift paradigm described above, found that in high-functioning adults with autism, posterior STS (pSTS) activation was undifferentiated while they watched a human shift gaze toward a target and then toward adjacent empty space.[148] The lack of additional STS processing in the incongruent state may suggest that these subjects fail to form an expectation of what the actor should do given contextual information, or that feedback about the violation of this expectation does not reach STS. Both explanations involve an impairment or deficit in the ability to link eye gaze shifts with intentional explanations. This study also found a significant anticorrelation between STS activation in the incongruent-congruent contrast and social subscale score on the Autism Diagnostic Interview-Revised, but not scores on the other subscales.

An fMRI study demonstrated that the right temporoparietal junction (rTPJ) of higher-functioning adults with autism was not more selectively activated for mentalizing judgments when compared to physical judgments about self and other.[149] rTPJ selectivity for mentalizing was also related to individual variation on clinical measures of social impairment: individuals whose rTPJ was increasingly more active for mentalizing compared to physical judgments were less socially impaired, while those who showed little to no difference in response to mentalizing or physical judgments were the most socially impaired. This evidence builds on work in typical development that suggests rTPJ is critical for representing mental state information, whether it is about oneself or others. It also points to an explanation at the neural level for the pervasive mind-blindness difficulties in autism that are evident throughout the lifespan.[150]

In schizophrenia

edit

The brain regions associated with theory of mind include the superior temporal gyrus (STS), the temporoparietal junction (TPJ), the medial prefrontal cortex (mPFC), the precuneus, and the amygdala.[151] The reduced activity in the mPFC of individuals with schizophrenia is associated with theory of mind deficit and may explain impairments in social function among people with schizophrenia.[152] Increased neural activity in mPFC is related to better perspective-taking, emotion management, and increased social functioning.[152] Disrupted brain activities in areas related to theory of mind may increase social stress or disinterest in social interaction, and contribute to the social dysfunction associated with schizophrenia.[152]

Practical validity

edit

Group member average scores of theory of mind abilities, measured with the Reading the Mind in the Eyes test[153] (RME), are possibly drivers of successful group performance.[154] High group average scores on the RME are correlated with the collective intelligence factor c, defined as a group's ability to perform a wide range of mental tasks,[154][155] a group intelligence measure similar to the g factor for general individual intelligence. RME is a theory of mind test for adults[153] that shows sufficient test-retest reliability[156] and constantly differentiates control groups from individuals with functional autism or Asperger syndrome.[153] It is one of the most widely accepted and well-validated tests for theory of mind abilities within adults.[157]

Evolution

edit

The evolutionary origin of theory of mind remains obscure. While many theories make claims about its role in the development of human language and social cognition, few of them specify in detail any evolutionary neurophysiological precursors. One theory claims that theory of mind has its roots in two defensive reactions—immobilization stress and tonic immobility—which are implicated in the handling of stressful encounters and also figure prominently in mammalian childrearing practice.[158] Their combined effect seems capable of producing many of the hallmarks of theory of mind, such as eye-contact, gaze-following, inhibitory control, and intentional attributions.

Non-human

edit

An open question is whether non-human animals have a genetic endowment and social environment that allows them to acquire a theory of mind like human children do.[11] This is a contentious issue because of the difficulty of inferring from animal behavior the existence of thinking or of particular thoughts, or the existence of a concept of self or self-awareness, consciousness, and qualia. One difficulty with non-human studies of theory of mind is the lack of sufficient numbers of naturalistic observations, giving insight into what the evolutionary pressures might be on a species' development of theory of mind.

Non-human research still has a major place in this field. It is especially useful in illuminating which nonverbal behaviors signify components of theory of mind, and in pointing to possible stepping points in the evolution of that aspect of social cognition. While it is difficult to study human-like theory of mind and mental states in species of whose potential mental states we have an incomplete understanding, researchers can focus on simpler components of more complex capabilities. For example, many researchers focus on animals' understanding of intention, gaze, perspective, or knowledge (of what another being has seen). A study that looked at understanding of intention in orangutans, chimpanzees, and children showed that all three species understood the difference between accidental and intentional acts.[28]

Individuals exhibit theory of mind by extrapolating another's internal mental states from their observable behavior. So one challenge in this line of research is to distinguish this from more run-of-the-mill stimulus-response learning, with the other's observable behavior being the stimulus.

Recently,[may be outdated as of March 2022] most non-human theory of mind research has focused on monkeys and great apes, who are of most interest in the study of the evolution of human social cognition. Other studies relevant to attributions theory of mind have been conducted using plovers[159] and dogs,[160] which show preliminary evidence of understanding attention—one precursor of theory of mind—in others.

There has been some controversy over the interpretation of evidence purporting to show theory of mind ability—or inability—in animals.[161] For example, Povinelli et al.[162] presented chimpanzees with the choice of two experimenters from whom to request food: one who had seen where food was hidden, and one who, by virtue of one of a variety of mechanisms (having a bucket or bag over his head, a blindfold over his eyes, or being turned away from the baiting) does not know, and can only guess. They found that the animals failed in most cases to differentially request food from the "knower". By contrast, Hare, Call, and Tomasello found that subordinate chimpanzees were able to use the knowledge state of dominant rival chimpanzees to determine which container of hidden food they approached.[51] William Field and Sue Savage-Rumbaugh believe that bonobos have developed theory of mind, and cite their communications with a captive bonobo, Kanzi, as evidence.[163]

In one experiment, ravens (Corvus corax) took into account visual access of unseen conspecifics. The researchers argued that "ravens can generalize from their own perceptual experience to infer the possibility of being seen".[164]

Evolutionary anthropologist Christopher Krupenye studied the existence of theory of mind, and particularly false beliefs, in non-human primates.[165]

Keren Haroush and Ziv Williams outlined the case for a group of neurons in primates' brains that uniquely predicted the choice selection of their interacting partner. These primates' neurons, located in the anterior cingulate cortex of rhesus monkeys, were observed using single-unit recording while the monkeys played a variant of the iterative prisoner's dilemma game.[166] By identifying cells that represent the yet unknown intentions of a game partner, Haroush & Williams' study supports the idea that theory of mind may be a fundamental and generalized process, and suggests that anterior cingulate cortex neurons may act to complement the function of mirror neurons during social interchange.[167]

See also

edit

References

edit
  1. ^ Apperly IA, Butterfill SA (2009). "Do humans have two systems to track beliefs and belief-like states?". Psychological Review. 116 (4): 953–970. doi:10.1037/a0016923. PMID 19839692.
  2. ^ a b c d e Baron-Cohen S (1991). "Precursors to a theory of mind: Understanding attention in others". In Whiten A (ed.). Natural theories of mind: evolution, development, and simulation of everyday mindreading. Oxford, UK Cambridge, Massachusetts: B. Blackwell. pp. 233–251. ISBN 978-0-631-17194-2.
  3. ^ Völlm BA (1 January 2006). "Neuronal correlates of theory of mind and empathy: A functional magnetic resonance imaging study in a nonverbal task". NeuroImage. 29 (1): 90–98. doi:10.1016/j.neuroimage.2005.07.022. ISSN 1053-8119. PMID 16122944. S2CID 6659365.
  4. ^ Gernsbacher MA, Yergeau M (9 December 2019). "Empirical failures of the claim that autistic people lack a theory of mind". Archives of Scientific Psychology. 7 (1). American Psychological Association: 102–118. doi:10.1037/arc0000067. ISSN 2169-3269. PMC 6959478. PMID 31938672. Supporting documentation: Gernsbacher MA (2018). "Critical Review of Autism and Theory and Mind: A Tech Report". Open Science Framework. doi:10.17605/OSF.IO/3R2QY.
  5. ^ See the review and meta-analyses by Morton Ann Gernsbacher regarding many failed replications of classic theory of mind studies[4]
  6. ^ Bora E, Köse S (18 July 2016). "Meta-analysis of theory of mind in anorexia nervosa and bulimia nervosa: A specific İmpairment of cognitive perspective taking in anorexia nervosa?". International Journal of Eating Disorders. 49 (8): 739–740. doi:10.1002/eat.22572. hdl:11343/291969. ISSN 0276-3478. PMID 27425037.
  7. ^ Sanvicente-Vieira B, Kluwe-Schiavon B, Corcoran R, Grassi-Oliveira R (1 March 2017). "Theory of Mind Impairments in Women With Cocaine Addiction". Journal of Studies on Alcohol and Drugs. 78 (2). New Brunswick, New Jersey: Rutgers University: 258–267. doi:10.15288/jsad.2017.78.258. PMID 28317506.
  8. ^ a b Uekermann J, Daum I (May 2008). "Social cognition in alcoholism: a link to prefrontal cortex dysfunction?". Addiction. 103 (5). London, England: Wiley-Blackwell: 726–35. doi:10.1111/j.1360-0443.2008.02157.x. PMID 18412750.
  9. ^
  10. ^ a b c d Shahaeian A, Peterson CC, Slaughter V, Wellman HM (2011). "Culture and the sequence of steps in theory of mind development". Developmental Psychology. 47 (5): 1239–1247. doi:10.1037/a0023899. PMID 21639620.
  11. ^ a b c d Premack D, Woodruff G (December 1978). "Does the chimpanzee have a theory of mind?". Behavioral and Brain Sciences. 1 (4): 515–526. doi:10.1017/S0140525X00076512.
  12. ^ Bruner, J. S. (1981). "Intention in the structure of action and interaction". In L. P. Lipsitt & C. K. Rovee-Collier (Eds.), Advances in infancy research. Vol. 1 (pp. 41–56). Norwood, New Jersey: Ablex Publishing Corporation.
  13. ^ Gordon, R. M. (1996). "'Radical' simulationism". In P. Carruthers & P. K. Smith, Eds. Theories of theories of mind. Cambridge: Cambridge University Press.
  14. ^
  15. ^ a b Wellman HM, Fang F, Liu D, Zhu L, Liu G (2006). "Scaling of Theory-of-Mind Understandings in Chinese Children". Psychological Science. 17 (12): 1075–1081. doi:10.1111/j.1467-9280.2006.01830.x. PMID 17201790. S2CID 18632127.
  16. ^ Demetriou, A., Mouyi, A., & Spanoudis, G. (2010). "The development of mental processing", Nesselroade, J. R. (2010). "Methods in the study of life-span human development: Issues and answers". In W. F. Overton (Ed.), Biology, cognition and methods across the life-span. Volume 1 of the Handbook of life-span development (pp. 36–55), Editor-in-chief: R. M. Lerner. Hoboken, New Jersey: Wiley.
  17. ^ de Waal, Franz B.M. (2007), "Commiserating Mice" Scientific American, 24 June 2007
  18. ^ Hynes CA, Baird AA, Grafton ST (2006). "Differential role of the orbital frontal lobe in emotional versus cognitive perspective-taking". Neuropsychologia. 44 (3): 374–383. doi:10.1016/j.neuropsychologia.2005.06.011. PMID 16112148. S2CID 13159903.
  19. ^ Blackledge, J. T. (2003). An introduction to relational frame theory: Basics and applications.The Behavior Analyst Today, 3(4), 421–433. https://doi.org/10.1037/h0099997.
  20. ^ Hayes, S. C., Barnes-Holmes, D., & Roche, B. (2001). Relational frame theory: A post-Skinnerian account of human language and cognition. New York: Kluwer Academic/Plenum.
  21. ^ Rehfeldt, R. A., and Barnes-Holmes, Y., (2009). Derived Relational Responding: Applications for learners with autism and other developmental disabilities. Oakland, California: New Harbinger.
  22. ^ McHugh, L. & Stewart, I. (2012). The self and perspective-taking: Contributions and applications from modern behavioral science. Oakland, California: New Harbinger.
  23. ^ Apperly IA (1 April 2008). "Beyond Simulation–Theory and Theory–Theory: Why social cognitive neuroscience should use its own concepts to study "theory of mind"". Cognition. 107 (1): 266–283. doi:10.1016/j.cognition.2007.07.019. ISSN 0010-0277.
  24. ^ Carruthers, P. (1996). "Simulation and self-knowledge: a defence of the theory-theory". In P. Carruthers & P.K. Smith, Eds. Theories of theories of mind. Cambridge: Cambridge University Press.
  25. ^ Dennett, D. (1987). The Intentional Stance. Cambridge: MIT Press.
  26. ^ Fox E. "Functional Contextualism". Association for Contextual Behavioral Science. Retrieved 29 March 2014.
  27. ^ Dennett DC (1987). "Reprint of Intentional systems in cognitive ethology: The Panglossian paradigm defended (to p. 260)". The Brain and Behavioral Sciences. 6 (3): 343–390. doi:10.1017/s0140525x00016393. S2CID 32108464.
  28. ^ a b Call J, Tomasello M (1998). "Distinguishing intentional from accidental actions in orangutans (Pongo pygmaeus), chimpanzees (Pan troglodytes), and human children (Homo sapiens)". Journal of Comparative Psychology. 112 (2): 192–206. doi:10.1037/0735-7036.112.2.192. PMID 9642787.
  29. ^ a b Meltzoff A (1995). "Understanding the intentions of others: Re-enactment of intended acts by 18-month-old children". Developmental Psychology. 31 (5): 838–850. doi:10.1037/0012-1649.31.5.838. PMC 4137788. PMID 25147406.
  30. ^ Gagliardi JL, Kirkpatrick-Steger KK, Thomas J, Allen GJ, Blumberg MS (1995). "Seeing and knowing: Knowledge attribution versus stimulus control in adult humans (Homo sapiens)". Journal of Comparative Psychology. 109 (2): 107–114. doi:10.1037/0735-7036.109.2.107. PMID 7758287.
  31. ^ Meltzoff AN (2003). "Imitation as a mechanism of social cognition: Origins of empathy, theory of mind, and the representation of action". In Goswami U (ed.). Blackwell handbook of childhood cognitive development. Malden, Massachusetts: Blackwell Publishers. pp. 6–25. ISBN 978-0-631-21840-1.
  32. ^ Horowitz AC (2003). "Do humans ape? or Do apes human? Imitation and intention in humans and other animals". Journal of Comparative Psychology. 17 (3): 325–336. CiteSeerX 10.1.1.688.3721. doi:10.1037/0735-7036.117.3.325. PMID 14498809. S2CID 14929964.
  33. ^ a b Laghi F, Lonigro A, Levanto S, Ferraro M, Baumgartner E, Baiocco R (2016). "The Role of Nice and Nasty Theory of Mind in Teacher-Selected Peer Models for Adolescents with Autism Spectrum Disorders". Measurement and Evaluation in Counseling and Development. 49 (3): 207–216. doi:10.1177/0748175615596784. S2CID 147180970.
  34. ^ Etel E, Yagmurlu B (2015). "Social Competence, Theory of Mind, and Executive Function in Institution-reared Turkish Children". International Journal of Behavioral Development. 39 (6): 519–529. doi:10.1177/0165025414556095. S2CID 147324302.
  35. ^ Milligan K, Astington JW, Dack LA (March–April 2007). "Language and theory of mind: meta-analysis of the relation between language ability and false-belief understanding". Child Development. 78 (2): 622–646. doi:10.1111/j.1467-8624.2007.01018.x. PMID 17381794.
  36. ^ Sperber D, Wilson, Deirdre (2001). Relevance: communication and cognition (2nd ed.). Oxford: Blackwell Publishers. ISBN 978-0-631-19878-9. OCLC 32589501.
  37. ^ Tauzin T, Gergely G (22 June 2018). "Communicative mind-reading in preverbal infants". Scientific Reports. 8 (1): 9534. Bibcode:2018NatSR...8.9534T. doi:10.1038/s41598-018-27804-4. ISSN 2045-2322. PMC 6015048. PMID 29934630.
  38. ^ a b Miller CA (May 2006). "Developmental relationships between language and theory of mind". American Journal of Speech-Language Pathology. 15 (2): 142–154. doi:10.1044/1058-0360(2006/014). PMID 16782686. S2CID 28828189.
  39. ^ Ruffman T, Slade L, Crowe E (May–June 2002). "The relation between children's and mothers' mental state language and theory-of-mind understanding". Child Development. 73 (3): 734–751. doi:10.1111/1467-8624.00435. PMID 12038548. Pdf. Archived 8 March 2021 at the Wayback Machine
  40. ^ Woolfe T, Want SC, Siegal M (May–June 2002). "Signposts to development: theory of mind in deaf children". Child Development. 73 (3): 768–778. CiteSeerX 10.1.1.70.4337. doi:10.1111/1467-8624.00437. PMID 12038550. Pdf.
  41. ^ Moore C, Pure K, Furrow D (June 1990). "Children's understanding of the modal expression of speaker certainty and uncertainty and its relation to the development of a representational theory of mind". Child Development. 61 (3): 722–730. doi:10.1111/j.1467-8624.1990.tb02815.x. JSTOR 1130957. PMID 2364747.
  42. ^ de Villiers JG, Pyers JE (January–March 2002). "Complements to cognition: a longitudinal study of the relationship between complex syntax and false-belief-understanding". Cognitive Development. 17 (1): 1037–1060. doi:10.1016/S0885-2014(02)00073-4.
  43. ^ Saxe R, Kanwisher, N (August 2003). "People thinking about thinking people. The role of the temporo-parietal junction in "theory of mind"". NeuroImage. 19 (4): 1835–42. doi:10.1016/S1053-8119(03)00230-1. PMID 12948738. S2CID 206118958.
  44. ^ Apperly I (2011). Mindreaders: the cognitive basis of "theory of mind". Hove: Psychology Press. ISBN 978-0-203-83392-6. OCLC 705929873.
  45. ^ Keysar B, Lin S, Barr DJ (1 August 2003). "Limits on theory of mind use in adults". Cognition. 89 (1): 25–41. doi:10.1016/S0010-0277(03)00064-7. ISSN 0010-0277. PMID 12893123. S2CID 8523033.
  46. ^ Royzman EB, Cassidy KW, Baron J (2003). ""I know, you know": Epistemic egocentrism in children and adults". Review of General Psychology. 7 (1): 38–65. doi:10.1037/1089-2680.7.1.38. ISSN 1089-2680. S2CID 197665718.
  47. ^
  48. ^ Kovacs A, Teglas E, Endress AD (24 December 2010). "The Social Sense: Susceptibility to Others' Beliefs in Human Infants and Adults". Science. 330 (6012): 1830–1834. Bibcode:2010Sci...330.1830K. doi:10.1126/science.1190792. ISSN 0036-8075. PMID 21205671. S2CID 2908352.
  49. ^ Samson D, Apperly IA, Braithwaite JJ, Andrews BJ, Bodley Scott SE (2010). "Seeing it their way: Evidence for rapid and involuntary computation of what other people see". Journal of Experimental Psychology: Human Perception and Performance. 36 (5): 1255–1266. doi:10.1037/a0018729. ISSN 1939-1277. PMID 20731512.
  50. ^ a b Heyes C (2014). "Submentalizing: I Am Not Really Reading Your Mind". Current Perspectives on Psychological Science. 9 (2): 131–143. doi:10.1177/1745691613518076. PMID 26173251. S2CID 206778161.
  51. ^ a b Hare B, Call J, Tomasello M (2001). "Do chimpanzees know what conspecifics know and do not know?". Animal Behaviour. 61 (1): 139–151. doi:10.1006/anbe.2000.1518. PMID 11170704. S2CID 3402554.
  52. ^ Apperly IA, Butterfill SA (2009). "Do humans have two systems to track beliefs and belief-like states?". Psychological Review. 116 (4): 953–970. CiteSeerX 10.1.1.377.3254. doi:10.1037/a0016923. ISSN 1939-1471. PMID 19839692.
  53. ^ Kahneman D (25 October 2011). Thinking, fast and slow (1st ed.). New York: Farrar, Straus and Giroux. ISBN 978-0-374-27563-1. OCLC 706020998.
  54. ^ Carruthers P (1 March 2017). "Mindreading in adults: evaluating two-systems views". Synthese. 194 (3): 673–688. doi:10.1007/s11229-015-0792-3. ISSN 1573-0964. S2CID 6049635.
  55. ^ Henry JD, Phillips LH, Ruffman T, Bailey PE (2013). "A meta-analytic review of age differences in theory of mind". Psychology and Aging. 28 (3): 826–839. doi:10.1037/a0030677. PMID 23276217.
  56. ^ Reiter AM, Kanske P, Eppinger B, Li SC (8 September 2017). "The Aging of the Social Mind - Differential Effects on Components of Social Understanding". Scientific Reports. 7 (1): 11046. Bibcode:2017NatSR...711046R. doi:10.1038/s41598-017-10669-4. ISSN 2045-2322. PMC 5591220. PMID 28887491.
  57. ^ Stietz J, Pollerhoff L, Kurtz M, Li SC, Reiter AM, Kanske P (2021). "The ageing of the social mind: replicating the preservation of socio-affective and the decline of socio-cognitive processes in old age". Royal Society Open Science. 8 (8): 210641. Bibcode:2021RSOS....810641S. doi:10.1098/rsos.210641. PMC 8386516. PMID 34457343.
  58. ^ Kalbe E (2010). "Dissociating Cognitive from Affective Theory of Mind: A TMS Study". Cortex. 46 (6): 769–780. doi:10.1016/j.cortex.2009.07.010. PMID 19709653. S2CID 16815856.
  59. ^ Duval C, Piolino P, Benjanin A, Eustache F, Desgranges B (2011). "Age Effects on Different Components of Theory of Mind". Consciousness and Cognition. 20 (3): 627–642. doi:10.1016/j.concog.2010.10.025. PMID 21111637. S2CID 7877493.
  60. ^ a b Wellman HM, Liu D (1 March 2004). "Scaling of Theory-of-Mind Tasks". Child Development. 75 (2): 523–541. doi:10.1111/j.1467-8624.2004.00691.x. ISSN 1467-8624. PMID 15056204. S2CID 5562001.
  61. ^ Callaghan T, Rochat P, Lillard A, Claux ML, Odden H, Itakura S, et al. (2005). "Synchrony in the onset of mental-state reasoning: Evidence from five cultures". Psychological Science. 16 (5): 378–384. doi:10.1111/j.0956-7976.2005.01544.x. PMID 15869697. S2CID 1183819.
  62. ^ The German word Umwelt means "environment" or "surrounding world"
  63. ^ Wimmer H, Perner J (1983). "Beliefs about beliefs: Representation and constraining function of wrong beliefs in young children's understanding of deception". Cognition. 13 (1): 103–128. doi:10.1016/0010-0277(83)90004-5. PMID 6681741. S2CID 17014009.
  64. ^ O'Brien K, Slaughter V, Peterson CC (2011). "Sibling influences on theory of mind development for children with ASD". Journal of Child Psychology and Psychiatry. 52 (6): 713–719. doi:10.1111/j.1469-7610.2011.02389.x. PMID 21418062. Retrieved 18 May 2021.
  65. ^ a b Mitchell P (2011). "Acquiring a theory of mind". In Slater A, Bremner JG (eds.). An introduction to developmental psychology (3rd ed.). Hoboken, New Jersey: John Wiley & Sons Inc. pp. 381–406. ISBN 978-1-118-76720-7.
  66. ^ Roessler, Johannes (2013). "When the Wrong Answer Makes Perfect Sense - How the Beliefs of Children Interact With Their Understanding of Competition, Goals and the Intention of Others". University of Warwick Knowledge Centre. Archived from the original on 3 December 2013. Retrieved 15 August 2013.
  67. ^ a b c Baron-Cohen S, Leslie AM, Frith U (October 1985). "Does the autistic child have a "theory of mind"?" (PDF). Cognition. 21 (1): 37–46. doi:10.1016/0010-0277(85)90022-8. PMID 2934210. S2CID 14955234. Archived from the original (PDF) on 28 September 2017.
  68. ^ a b Gernsbacher MA, Yergeau M (2019). "Empirical Failures of the Claim That Autistic People Lack a Theory of Mind". Archives of Scientific Psychology. 7 (1): 102–118. doi:10.1037/arc0000067. PMC 6959478. PMID 31938672.
  69. ^ Ozonoff S, Pennington BF, Rogers SJ (1991). "Executive Function Deficits in High-Functioning Autistic Individuals: Relationship to Theory of Mind". Journal of Child Psychology and Psychiatry. 32 (7): 1081–1105. doi:10.1111/j.1469-7610.1991.tb00351.x. ISSN 0021-9630. PMID 1787138. Retrieved 22 November 2023.
  70. ^ Oswald DP, Ollendick TH (1989). "Role taking and social competence in autism and mental retardation". Journal of Autism and Developmental Disorders. 19 (1): 119–127. doi:10.1007/BF02212723. ISSN 0162-3257. PMID 2708295. S2CID 46444974.
  71. ^ Tager-Flusberg H, Sullivan K (1994). "A second look at second-order belief attribution in autism". Journal of Autism and Developmental Disorders. 24 (5): 577–586. doi:10.1007/BF02172139. ISSN 0162-3257. PMID 7814307. S2CID 25194344.
  72. ^ Scott RM, Baillargeon R (2017). "Early False-Belief Understanding". Trends in Cognitive Sciences. 21 (4): 237–249. doi:10.1016/j.tics.2017.01.012. ISSN 1364-6613.
  73. ^ Mitchell, P. (2011). "Acquiring a Theory of Mind". In Alan Slater, & Gavin Bremner (eds.) An Introduction to Developmental Psychology: Second Edition, BPS Blackwell. page 371
  74. ^ Gopnik A, Aslington JW (1988). "Children's understanding of representational change and its relation to the understanding of false belief and the appearance-reality distinction". Child Development. 59 (1): 26–37. doi:10.2307/1130386. JSTOR 1130386. PMID 3342716.
  75. ^ Rakoczy H (2022). "Foundations of theory of mind and its development in early childhood". Nature Reviews Psychology. 1 (4): 223–235. doi:10.1038/s44159-022-00037-z. ISSN 2731-0574.
  76. ^
  77. ^ Sabbagh M, Moses L, Shiverick S (2006). "Executive functioning and preschoolers' understanding of false beliefs, false photographs, and false signs". Child Development. 77 (4): 1034–1049. doi:10.1111/j.1467-8624.2006.00917.x. PMID 16942504.
  78. ^ Apperly IA, Samson D, Chiavarino C, Bickerton WL, Humphreys GW (1 May 2007). "Testing the domain-specificity of a theory of mind deficit in brain-injured patients: Evidence for consistent performance on non-verbal, "reality-unknown" false belief and false photograph tasks". Cognition. 103 (2): 300–321. doi:10.1016/j.cognition.2006.04.012. ISSN 0010-0277. PMID 16781700. S2CID 7377954.
  79. ^ Woodward, "Infants selectively encode the goal object of an actor's reach", Cognition (1998)
  80. ^ a b Leslie, A. M. (1991). "Theory of mind impairment in autism". In A. Whiten (Ed.), Natural theories of mind: Evolution, development and simulation of everyday mindreading (pp. 63–77). Oxford: Basil Blackwell.
  81. ^ Poulin-Dubois D, Sodian B, Metz U, Tilden J, Schoeppner B (2007). "Out of Sight is Not Out of Mind: Developmental Changes in Infants' Understanding of Visual Perception During the Second Year". Journal of Cognition and Development. 8 (4): 401–425. doi:10.1080/15248370701612951. S2CID 143291042.
  82. ^ Onishi KH, Baillargeon R (2005). "Do 15-Month-Old Infants Understand False Beliefs?". Science. 308 (5719): 255–8. Bibcode:2005Sci...308..255O. doi:10.1126/science.1107621. PMC 3357322. PMID 15821091.
  83. ^ Kovács ÁM, Téglás E, Endress AD (24 December 2010). "The Social Sense: Susceptibility to Others' Beliefs in Human Infants and Adults". Science. 330 (6012): 1830–1834. Bibcode:2010Sci...330.1830K. doi:10.1126/science.1190792. ISSN 0036-8075. PMID 21205671. S2CID 2908352.
  84. ^ Poulin-Dubois D, Chow V (2009). "The effect of a looker's past reliability on infants' reasoning about beliefs". Developmental Psychology. 45 (6): 1576–82. doi:10.1037/a0016715. PMID 19899915. S2CID 6916359.
  85. ^ How the Body Shapes the Way We Think: A New View of Intelligence, Rolf Pfeifer and Josh Bongard, October 2006
  86. ^ M Botha. "Autistic community connectedness as a buffer against the effects of minority stress." (2020) "I will argue that literature regarding "theory of mind" has constituted EV. Researchers, based on one experiment, with a small sample of autistic children (20) (mean chronological age = 11, estimated verbal ability age = 5), argued that autistic individuals lacked "theory of mind", which is to say, they lacked the ability to infer their own and others minds, that this was a universal effect and unique to autism (Baron-Cohen, Leslie, & Frith, 1985). Four autistic participants (20%) passed the experiment, demonstrating theory of mind, sixteen did not, yet it was claimed to be a universal effect which was unique to autism. It was hypothesised instead that the kids who passed may not "really" be autistic, instead of theory of mind having limits in its ability to explain autism. The available evidence has never been that it was universal (autistic children who passed the test were deemed to be outliers and an exception to rule, despite making up between 20–25% of the sample completing the task, reliably (Baron-Cohen, Leslie, & Frith, 1985; Yirmiya et al., 1998)."
  87. ^ Moore, S. (2002). Asperger Syndrome and the Elementary School Experience. Shawnee Mission, Kansas: Autism Asperger Publishing Company.
  88. ^ Baker, J. (2003). Social Skills Training: for children and adolescents with Asperger Syndrome and Social-Communication Problems. Mission, Kansas: Autism Asperger Publishing Company.
  89. ^ Peterson C, Slaughter V, Moore C, Wellman H (2016). "Peer Social Skills and Theory of Mind in Children with Autism, Deafness, or Typical Development". Developmental Psychology. 52 (1): 46–57. doi:10.1037/a0039833. PMID 26524383.
  90. ^ Happe, FG (1995). "The role of age and verbal ability in the theory of mind task performance of subjects with autism". Child Development. 66 (3): 843–55. doi:10.2307/1131954. JSTOR 1131954. PMID 7789204.
  91. ^ a b Baron-Cohen S (1991). "Precursors to a theory of mind: Understanding attention in others". In Whiten A (ed.). Natural theories of mind: Evolution, development, and simulation of everyday mindreading. Cambridge, Massachusetts: Basil Blackwell. pp. 233–251. ISBN 978-0-631-17194-2.
  92. ^ a b Leslie AM (1991). "Theory of mind impairment in autism". In Whiten A (ed.). Natural theories of mind: Evolution, development, and simulation of everyday mindreading. Cambridge, Massachusetts: Basil Blackwell. ISBN 978-0-631-17194-2.
  93. ^ Hobson R (1995). Autism and the development of mind. Hillsdale, N.J.: Lawrence Erlbaum. ISBN 978-0-86377-239-9.
  94. ^ Dapretto M, Davies MS, Pfeifer JH, Scott AA, Sigman M, Bookheimer SY, et al. (2006). "Understanding emotions in others: mirror neuron dysfunction in children with autism spectrum disorders". Nature Neuroscience. 9 (1): 28–30. doi:10.1038/nn1611. PMC 3713227. PMID 16327784.
  95. ^ Yergeau M (2013). "Clinically Significant Disturbance: On Theorists Who Theorize Theory of Mind". Disability Studies Quarterly. 33 (4). doi:10.18061/dsq.v33i4.3876. I will say something about autism, and someone will assert that nothing I've said matters or applies to anything. Because I am self-centered. Because I do not have the capacity to intuit other minds or to understand the life experiences of others.
  96. ^ Tine M, Lucariello J (2012). "Unique Theory of Mind Differentiation in Children with Autism and Asperger Syndrome". Autism Research and Treatment. 2012: 1–11. doi:10.1155/2012/505393. PMC 3420603. PMID 22934174.
  97. ^ Astington JW (2003). "Sometimes necessary, never sufficient: False-belief understanding and social competence". Individual Differences in Theory of Mind: Implications for Typical and Atypical Development: 13–38.
  98. ^ Chung K, Reavis S, Mosconi M, Drewry J, Matthews T, Tassé MJ (2007). "Peer-mediated social skills training program for young children with high-functioning autism". Research in Developmental Disabilities. 28 (4): 423–436. doi:10.1016/j.ridd.2006.05.002. PMID 16901676.
  99. ^ Fletcher-Watson S, McConnell F, Manola E, McConachie H (21 March 2014). "Interventions based on the Theory of Mind cognitive model for autism spectrum disorder (ASD)". The Cochrane Database of Systematic Reviews. 2014 (3): CD008785. doi:10.1002/14651858.CD008785.pub2. ISSN 1469-493X. PMC 6923148. PMID 24652601.
  100. ^ Milton DE (1 October 2012). "On the ontological status of autism: the 'double empathy problem'". Disability & Society. 27 (6): 883–887. doi:10.1080/09687599.2012.710008. ISSN 0968-7599. S2CID 54047060.
  101. ^ Crompton CJ, Sharp M, Axbey H, Fletcher-Watson S, Flynn EG, Ropar D (23 October 2020). "Neurotype-Matching, but Not Being Autistic, Influences Self and Observer Ratings of Interpersonal Rapport". Frontiers in Psychology. 11: 586171. doi:10.3389/fpsyg.2020.586171. ISSN 1664-1078. PMC 7645034. PMID 33192918.
  102. ^ Sucksmith E, Allison C, Baron-Cohen S, Chakrabarti B, Hoekstra RA (1 January 2013). "Empathy and emotion recognition in people with autism, first-degree relatives, and controls". Neuropsychologia. 51 (1): 98–105. doi:10.1016/j.neuropsychologia.2012.11.013. ISSN 0028-3932. PMC 6345368. PMID 23174401.
  103. ^ Chown N (26 November 2014). "More on the ontological status of autism and double empathy". Disability & Society. 29 (10): 1672–1676. doi:10.1080/09687599.2014.949625. ISSN 0968-7599. S2CID 143826899.
  104. ^ a b c Shamay-Tsoory SG, Harari H, Aharon-Peretz J, Levkovitz Y (May 2010). "The role of the orbitofrontal cortex in affective theory of mind deficits in criminal offenders with psychopathic tendencies". Cortex; A Journal Devoted to the Study of the Nervous System and Behavior. 46 (5): 668–677. doi:10.1016/j.cortex.2009.04.008. ISSN 1973-8102. PMID 19501818.
  105. ^ Blair J, Sellars C, Strickland I, Clark F, Williams A, Smith M, et al. (May 1996). "Theory of Mind in the psychopath". The Journal of Forensic Psychiatry. 7 (1): 15–25. doi:10.1080/09585189608409914. ISSN 0958-5184.
  106. ^ a b Richell RA, Mitchell DG, Newman C, Leonard A, Baron-Cohen S, Blair RJ (2003). "Theory of mind and psychopathy: can psychopathic individuals read the 'language of the eyes'?". Neuropsychologia. 41 (5): 523–526. doi:10.1016/s0028-3932(02)00175-6. ISSN 0028-3932. PMID 12559146.
  107. ^ Song Z, Jones A, Corcoran R, Daly N, Abu-Akel A, Gillespie SM (August 2023). "Psychopathic traits and theory of mind task performance: A systematic review and meta-analysis". Neuroscience and Biobehavioral Reviews. 151: 105231. doi:10.1016/j.neubiorev.2023.105231. ISSN 1873-7528. PMID 37172923.
  108. ^ a b c Sprong M, Schothorst P, Vos E, Hox J, Van Engeland H (2007). "Theory of mind in schizophrenia". British Journal of Psychiatry. 191 (1): 5–13. doi:10.1192/bjp.bp.107.035899. PMID 17602119.
  109. ^ a b c Ng R, Fish S, Granholm E (2015). "Insight and theory of mind in schizophrenia". Psychiatry Research. 225 (1–2): 169–174. doi:10.1016/j.psychres.2014.11.010. PMC 4269286. PMID 25467703.
  110. ^ Konstantakopoulos G, Ploumpidis D, Oulis P, Patrikelis P, Nikitopoulou S, Papadimitriou GN, et al. (2014). "The relationship between insight and theory of mind in schizophrenia". Schizophrenia Research. 152 (1): 217–222. doi:10.1016/j.schres.2013.11.022. PMID 24321712. S2CID 9566263.
  111. ^ Cassetta B, Goghari V (2014). "Theory of mind reasoning in schizophrenia patients and non-psychotic relatives". Psychiatry Research. 218 (1–2): 12–19. doi:10.1016/j.psychres.2014.03.043. PMID 24745472. S2CID 13944284.
  112. ^ a b c d Mehta UM, Bhagyavathi HD, Kumar CN, Thirthalli J, Gangadhar BN (2014). "Cognitive deconstruction of parenting in schizophrenia: The role of theory of mind". Australian & New Zealand Journal of Psychiatry. 48 (3): 249–258. doi:10.1177/0004867413500350. PMID 23928275. S2CID 206399183.
  113. ^ Lee L, Harkness KL, Sabbagh MA, Jacobson JA (2005). "Mental state decoding abilities in clinical depression". Journal of Affective Disorders. 86 (2–3): 247–58. doi:10.1016/j.jad.2005.02.007. PMID 15935244.
  114. ^ Harkness KL, Jacobson JA, Duong D, Sabbagh MA (April 2010). "Mental state decoding in past major depression: Effect of sad versus happy mood induction". Cognition & Emotion. 24 (3): 497–513. doi:10.1080/02699930902750249. ISSN 0269-9931. S2CID 40376607.
  115. ^ Harkness KL, Sabbagh MA, Jacobson JA, Chowdrey NK, Chen T (2005). "Enhanced accuracy of mental state decoding in dysphoric college students". Cognition and Emotion. 19 (7): 999–1025. doi:10.1080/02699930541000110. S2CID 144573653.
  116. ^ Harkness KL, Washburn D, Theriault J, Lee L, Sabbagh MA (2011). "Maternal history of depression is associated with enhanced theory of mind ability in depressed and non-depressed women". Psychiatry Research. 189 (1): 91–96. doi:10.1016/j.psychres.2011.06.007. PMID 21733579. S2CID 22903698.
  117. ^ Nilsson KK, de López KJ (January–February 2016). "Theory of mind in children with specific language impairment: A systematic review and meta-analysis". Child Development. 87 (1): 143–153. doi:10.1111/cdev.12462. PMID 26582261.
  118. ^ Gallagher HL, Frith CD (2003). "Functional imaging of 'theory of mind'". Trends in Cognitive Sciences. 7 (2): 77–83. CiteSeerX 10.1.1.319.778. doi:10.1016/S1364-6613(02)00025-6. PMID 12584026. S2CID 14873867.
  119. ^ Schurz M, Radua J, Tholen MG, Maliske L, Margulies DS, Mars RB, et al. (March 2021). "Toward a hierarchical model of social cognition: A neuroimaging meta-analysis and integrative review of empathy and theory of mind". Psychological Bulletin. 147 (3): 293–327. doi:10.1037/bul0000303. hdl:2066/226714. ISSN 1939-1455. PMID 33151703. S2CID 226272359.
  120. ^ Saxe R, Kanwisher N (2003). "People thinking about thinking peopleThe role of the temporo-parietal junction in "theory of mind"". NeuroImage. 19 (4): 1835–42. doi:10.1016/S1053-8119(03)00230-1. PMID 12948738. S2CID 206118958.
  121. ^ Saxe R, Schulz LE, Jiang YV (2006). "Reading minds versus following rules: Dissociating theory of mind and executive control in the brain". Social Neuroscience. 1 (3–4): 284–98. CiteSeerX 10.1.1.392.1433. doi:10.1080/17470910601000446. PMID 18633794. S2CID 10733339.
  122. ^ Saxe R, Powell LJ (2006). "It's the Thought That Counts: Specific Brain Regions for One Component of Theory of Mind". Psychological Science. 17 (8): 692–9. doi:10.1111/j.1467-9280.2006.01768.x. PMID 16913952. S2CID 4656022.
  123. ^ a b Decety J, Lamm C (2007). "The Role of the Right Temporoparietal Junction in Social Interaction: How Low-Level Computational Processes Contribute to Meta-Cognition". The Neuroscientist. 13 (6): 580–93. doi:10.1177/1073858407304654. PMID 17911216. S2CID 37026268.
  124. ^ Mitchell JP (2007). "Activity in Right Temporo-Parietal Junction is Not Selective for Theory-of-Mind". Cerebral Cortex. 18 (2): 262–71. doi:10.1093/cercor/bhm051. PMID 17551089.
  125. ^ Scholz J, Triantafyllou C, Whitfield-Gabrieli S, Brown EN, Saxe R (2009). Lauwereyns J (ed.). "Distinct Regions of Right Temporo-Parietal Junction Are Selective for Theory of Mind and Exogenous Attention". PLOS ONE. 4 (3): e4869. Bibcode:2009PLoSO...4.4869S. doi:10.1371/journal.pone.0004869. PMC 2653721. PMID 19290043.
  126. ^ Jamali, Mohsen, Grannan, Benjamin L., Fedorenko, Evelina, Saxe, Rebecca, Báez-Mendoza, Raymundo, Williams, Ziv M. (2021). "Single-neuronal predictions of others' beliefs in humans". Nature. 591 (7851): 610–614. Bibcode:2021Natur.591..610J. doi:10.1038/s41586-021-03184-0. PMC 7990696. PMID 33505022.
  127. ^ Heider F, & Simmel M (1944). An experimental study of apparent behavior. The American Journal of Psychology, 57, 243–259.
  128. ^
  129. ^ Schultz J, Friston KJ, O'Doherty J, Wolpert DM, Frith CD (2005). "Activation in Posterior Superior Temporal Sulcus Parallels Parameter Inducing the Percept of Animacy". Neuron. 45 (4): 625–35. doi:10.1016/j.neuron.2004.12.052. PMID 15721247. S2CID 9435424.
  130. ^ Allison T, Puce A, McCarthy G (2000). "Social perception from visual cues: Role of the STS region". Trends in Cognitive Sciences. 4 (7): 267–278. doi:10.1016/S1364-6613(00)01501-1. PMID 10859571. S2CID 11942671.
  131. ^ Morris JP, Pelphrey KA, McCarthy G (2008). "Perceived causality influences brain activity evoked by biological motion". Social Neuroscience. 3 (1): 16–25. doi:10.1080/17470910701476686. PMID 18633843. S2CID 24726037.
  132. ^ Pelphrey KA, Morris JP, McCarthy G (2004). "Grasping the Intentions of Others: The Perceived Intentionality of an Action Influences Activity in the Superior Temporal Sulcus during Social Perception". Journal of Cognitive Neuroscience. 16 (10): 1706–16. doi:10.1162/0898929042947900. PMID 15701223. S2CID 207576449.
  133. ^ Mosconi MW, Mack PB, McCarthy G, Pelphrey KA (2005). "Taking an "intentional stance" on eye-gaze shifts: A functional neuroimaging study of social perception in children". NeuroImage. 27 (1): 247–52. doi:10.1016/j.neuroimage.2005.03.027. PMID 16023041. S2CID 25792636.
  134. ^ Brass M, Schmitt RM, Spengler S, Gergely G (2007). "Investigating Action Understanding: Inferential Processes versus Action Simulation". Current Biology. 17 (24): 2117–21. Bibcode:2007CBio...17.2117B. doi:10.1016/j.cub.2007.11.057. PMID 18083518. S2CID 14318837.
  135. ^ a b Saxe R, Xiao DK, Kovacs G, Perrett D, Kanwisher N (2004). "A region of right posterior superior temporal sulcus responds to observed intentional actions". Neuropsychologia. 42 (11): 1435–46. doi:10.1016/j.neuropsychologia.2004.04.015. PMID 15246282. S2CID 15079818.
  136. ^
  137. ^ Stone VE, Gerrans P (2006). "What's domain-specific about theory of mind?". Social Neuroscience. 1 (3–4): 309–19. doi:10.1080/17470910601029221. PMID 18633796. S2CID 24446270.
  138. ^ Rizzolatti G, Craighero L (2004). "The Mirror-Neuron System". Annual Review of Neuroscience. 27 (1): 169–92. doi:10.1146/annurev.neuro.27.070203.144230. PMID 15217330. S2CID 1729870.
  139. ^ Iacoboni M, Molnar-Szakacs I, Gallese V, Buccino G, Mazziotta JC, Rizzolatti G (2005). "Grasping the Intentions of Others with One's Own Mirror Neuron System". PLOS Biology. 3 (3): e79. doi:10.1371/journal.pbio.0030079. PMC 1044835. PMID 15736981.
  140. ^ Gallese V, Goldman A (1998). "Mirror neurons and the simulation theory of mind-reading". Trends in Cognitive Sciences. 2 (12): 493–501. doi:10.1016/S1364-6613(98)01262-5. PMID 21227300. S2CID 10108122.
  141. ^ Frith U, Frith CD (2003). "Development and neurophysiology of mentalizing". Philosophical Transactions of the Royal Society B: Biological Sciences. 358 (1431): 459–73. doi:10.1098/rstb.2002.1218. PMC 1693139. PMID 12689373.
  142. ^
  143. ^ Gallagher S (2007). "Simulation trouble". Social Neuroscience. 2 (3–4): 353–65. doi:10.1080/17470910601183549. PMID 18633823. S2CID 205924856.
  144. ^ Gallagher S (2008). "Neural Simulation and Social Cognition". Mirror Neuron Systems. pp. 355–371. doi:10.1007/978-1-59745-479-7_16. ISBN 978-1-934115-34-3.
  145. ^
  146. ^ Baron-Cohen S, et al. (June 1999). "Social intelligence in the normal and autistic brain: an fMRI study". European Journal of Neuroscience. 11 (6): 1891–1898. doi:10.1046/j.1460-9568.1999.00621.x. PMID 10336657. S2CID 9436565.
  147. ^ Castelli F, Frith C, Happé F, Frith U (2002). "Autism, Asperger syndrome and brain mechanisms for the attribution of mental states to animated shapes". Brain. 125 (Pt 8): 1839–1849. doi:10.1093/brain/awf189. PMID 12135974.
  148. ^ Pelphrey KA, Morris JP, McCarthy G (2005). "Neural basis of eye gaze processing deficits in autism". Brain. 128 (Pt 5): 1038–1048. doi:10.1093/brain/awh404. PMID 15758039.
  149. ^ Lombardo MV, Chakrabarti B, Bullmore ET, Baron-Cohen S, et al. (MRC AIMS Consortium) (2011). "Specialization of right temporo-parietal junction for mentalizing and its relation to social deficits in autism". NeuroImage. 56 (3): 1832–1838. doi:10.1016/j.neuroimage.2011.02.067. PMID 21356316. S2CID 14782731.
  150. ^ Senju A, Southgate V, White S, Frith U (2009). "Mindblind eyes: an absence of spontaneous theory of mind in Asperger syndrome" (PDF). Science. 325 (5942): 883–885. Bibcode:2009Sci...325..883S. doi:10.1126/science.1176170. PMID 19608858. S2CID 9747918.
  151. ^ Pedersen A, Koelkebeck K, Brandt M, Wee M, Kueppers KA, Kugel H, et al. (2012). "Theory of mind in patients with schizophrenia: Is mentalizing delayed?". Schizophrenia Research. 137 (1–3): 224–229. doi:10.1016/j.schres.2012.02.022. PMID 22406281. S2CID 3167761.
  152. ^ a b c Dodell-Feder D, Tully LM, Lincoln SH, Hooker CI (2013). "The neural basis of theory of mind and its relationship to social functioning and social anhedonia in individuals with schizophrenia". NeuroImage: Clinical. 4: 154–163. doi:10.1016/j.nicl.2013.11.006. PMC 3871293. PMID 24371798.
  153. ^ a b c Baron-Cohen S, Wheelwright S, Hill J, Raste Y, Plumb I (February 2001). "The "Reading the Mind in the Eyes" Test revised version: a study with normal adults, and adults with Asperger syndrome or high-functioning autism" (PDF). Journal of Child Psychology and Psychiatry. 42 (2): 241–251. doi:10.1111/1469-7610.00715. PMID 11280420. S2CID 3016793.
  154. ^ a b Woolley AW, Chabris CF, Pentland A, Hashmi N, Malone TW (29 October 2010). "Evidence for a Collective Intelligence Factor in the Performance of Human Groups". Science. 330 (6004): 686–688. Bibcode:2010Sci...330..686W. doi:10.1126/science.1193147. PMID 20929725. S2CID 74579.
  155. ^ Engel D, Woolley AW, Jing LX, Chabris CF, Malone TW (16 December 2014). "Reading the Mind in the Eyes or Reading between the Lines? Theory of Mind Predicts Collective Intelligence Equally Well Online and Face-To-Face". PLOS ONE. 9 (12): e115212. Bibcode:2014PLoSO...9k5212E. doi:10.1371/journal.pone.0115212. PMC 4267836. PMID 25514387.
  156. ^ Hallerbäck MU, Lugnegård T, Hjärthag F, Gillberg C (2009). "The Reading the Mind in the Eyes Test: test-retest reliability of a Swedish version". Cognitive Neuropsychiatry. 14 (2): 127–143. doi:10.1080/13546800902901518. PMID 19370436. S2CID 28946179.
  157. ^ Pinkham AE, Penn DL, Green MF, Buck B, Healey K, Harvey PD (1 July 2014). "The Social Cognition Psychometric Evaluation Study: Results of the Expert Survey and RAND Panel". Schizophrenia Bulletin. 40 (4): 813–823. doi:10.1093/schbul/sbt081. PMC 4059426. PMID 23728248.
  158. ^ Tsoukalas I (2017). "Theory of Mind: Towards an Evolutionary Theory". Evolutionary Psychological Science. 4: 38–66. doi:10.1007/s40806-017-0112-x.Pdf.
  159. ^ Ristau CA (1991). "Aspects of the cognitive ethology of an injury-feigning bird, the piping plovers". In Ristau CA (ed.). Cognitive Ethology: Essays in Honor of Donald R. Griffin. Hillsdale, New Jersey: Lawrence Erlbaum. pp. 91–126. ISBN 978-1-134-99085-6.
  160. ^ Horowitz A (2008). "Attention to attention in domestic dog (Canis familiaris) dyadic play". Animal Cognition. 12 (1): 107–18. doi:10.1007/s10071-008-0175-y. PMID 18679727. S2CID 207050813.
  161. ^ Povinelli DJ, Vonk J (2003). "Chimpanzee minds: Suspiciously human?". Trends in Cognitive Sciences. 7 (4): 157–160. CiteSeerX 10.1.1.494.1478. doi:10.1016/S1364-6613(03)00053-6. PMID 12691763. S2CID 3473587.
  162. ^ Povinelli D, Nelson K, Boysen S (1990). "Inferences about guessing and knowing by chimpanzees (Pan troglodytes)". Journal of Comparative Psychology. 104 (3): 203–210. doi:10.1037/0735-7036.104.3.203. PMID 2225758.
  163. ^ Hamilton J (8 July 2006). "A Voluble Visit with Two Talking Apes". NPR. Retrieved 21 March 2012.
  164. ^ Thomas Bugnyar, Stephan A. Reber, Cameron Buckner (2015). "Ravens attribute visual access to unseen competitors". Nature Communications. 7: 10506. Bibcode:2016NatCo...710506B. doi:10.1038/ncomms10506. PMC 4740864. PMID 26835849.
  165. ^ Christopher Krupenye, Fumihiro Kano, Satoshi Hirata, Josep Call, Michael Tomasello (2016). "Great apes anticipate that other individuals will act according to false beliefs". Science. 354 (6308): 110–114. Bibcode:2016Sci...354..110K. doi:10.1126/science.aaf8110. hdl:10161/13632. PMID 27846501.
  166. ^ Haroush K, Williams Z (2015). "Neuronal Prediction of Opponent's Behavior during Cooperative Social Interchange in Primates". Cell. 160 (6): 1233–1245. doi:10.1016/j.cell.2015.01.045. PMC 4364450. PMID 25728667.
  167. ^ Sanfey AG, Civai C, Vavra P (2015). "Predicting the other in cooperative interactions" (PDF). Trends Cogn. Sci. 19 (7): 364–365. doi:10.1016/j.tics.2015.05.009. PMID 26055140. S2CID 20942680.

Further reading

edit
  • Excerpts taken from: Davis, E. (2007) "Mental Verbs in Nicaraguan Sign Language and the Role of Language in Theory of Mind". Undergraduate senior thesis, Barnard College, Columbia University.
edit