English: ```python
from matplotlib.widgets import AxesWidget
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import solve_ivp
- Define the parameter values
a = 0.7
b = 0.8
tau = 12.5
R = 0.1
I_ext = 0.5
- Define the system of ODEs
def system(t, y):
v, w = y
dv = v - (v ** 3) / 3 - w + R * I_ext
dw = (1 / tau) * (v + a - b * w)
return [dv, dw]
t_span = [0, 50]
initial_conditions = [(x, y) for x in np.linspace(-3, 3, 3) for y in np.linspace(-3, 3, 10)]
sols = {}
for ic in initial_conditions:
sols[ic] = solve_ivp(system, t_span, ic, dense_output=True, max_step=0.01)
vmin, vmax, wmin, wmax = -2, 2, -2, 2
vs = np.linspace(vmin, vmax, 200)
v_axis = np.linspace(vmin, vmax, 20)
w_axis = np.linspace(wmin, wmax, 20)
v_values, w_values = np.meshgrid(v_axis, w_axis)
dv = v_values - (v_values ** 3) / 3 - w_values + R * I_ext
dw = (1 / tau) * (v_values + a - b * w_values)
fig, ax = plt.subplots(figsize=(16,16))
- integral curves
for ic in initial_conditions:
sol = sols[ic]
ax.plot(sol.y[0], sol.y[1], color='k', alpha=0.2, linewidth=0.5)
- vector fields
arrow_lengths = np.sqrt(dv**2 + dw**2)
alpha_values = 1 - (arrow_lengths / np.max(arrow_lengths))**0.4
ax.quiver(v_values, w_values, dv, dw, color='blue', linewidth=0.5, scale=25, alpha=alpha_values)
- nullclines
ax.plot(vs, vs - vs**3/3 + R * I_ext, color="green", alpha=0.4, label="v nullcline")
ax.plot(vs, (vs + a) / b, color="red", alpha=0.4, label="w nullcline")
ax.set_xlabel('v')
ax.set_ylabel('w')
ax.set_title('FitzHugh-Nagumo Model')
ax.legend()
ax.set_xlim(vmin, vmax)
ax.set_ylim(wmin, wmax)
plt.show()
```