File:Impedance mismatch due to absorption.gif

Impedance_mismatch_due_to_absorption.gif (360 × 359 pixels, file size: 2.44 MB, MIME type: image/gif, looped, 73 frames, 7.3 s)

Summary

Description
English: A positive imaginary part of the refractive index means the wave will be absorbed. But, contrary to intuition, if you keep increasing absorption, the material will behave like a mirror, not a perfect absorber.
Date
Source https://twitter.com/j_bertolotti/status/1465294009325260802
Author Jacopo Bertolotti
Permission
(Reusing this file)
https://twitter.com/j_bertolotti/status/1030470604418428929

Mathematica 12.0 code

\[Sigma] = 5.; \[Lambda]0 = 2.; k0 = N[(2 \[Pi])/\[Lambda]0]; \[Delta] = \[Lambda]0/10; \[CapitalDelta] = 40*\[Lambda]0;
\[Phi]in = Table[0, {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
dim = Dimensions[\[Phi]in][[1]]
d = \[Lambda]0/2; (*typical scale of the absorbing layer*)

Imn = Table[10 (E^-((x + \[CapitalDelta]/2)/d) + E^((x - \[CapitalDelta]/2)/d) + E^-((y + \[CapitalDelta]/2)/d) + E^((y - \[CapitalDelta]/2)/d)), {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
L = -1/\[Delta]^2*KirchhoffMatrix[GridGraph[{dim, dim}]]; (*Discretized Laplacian*)

ReMapC[x_] := RGBColor[(2 x - 1) UnitStep[x - 0.5], 0, (1 - 2 x) UnitStep[0.5 - x]];

\[Alpha][t_] := 2*t^3;
frames = Table[
   Ren = Table[ If[y < 0, 1, 1 + I*\[Alpha][t] ], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
   n = Ren + I Imn;
   M = L + DiagonalMatrix[SparseArray[Flatten[n]^2 k0^2]]; (*Operator on the left-hand side of the equation we want to solve*)
   sourcef[x_, y_] := E^(-((x + (\[CapitalDelta]/4) )^2/(2 \[Sigma]^2))) E^(I 1.5 x) E^(-((y + \[CapitalDelta]/2)^2/(2 (\[Lambda]0/2)^2))) E^(I k0 y);
   
   \[Phi]in = Table[Chop[sourcef[x, y] ], {x, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}, {y, -\[CapitalDelta]/2, \[CapitalDelta]/2, \[Delta]}];
   b = -(Flatten[n]^2 - 1) k0^2 Flatten[\[Phi]in]; (*Right-hand side of the equation we want to solve*)
   \[Phi]s = Partition[LinearSolve[M, b], dim]; (*Solve the linear system*)
   
   ArrayPlot[
    Transpose[((Re[\[Phi]s])[[(4 d)/\[Delta] ;; (-4 d)/\[Delta], (4 d)/\[Delta] ;; (-4 d)/\[Delta]]]/0.012)^1], ColorFunction -> ReMapC , DataReversed -> True, Frame -> False, PlotRange -> {-1, 1}, ClippingStyle -> {Blue, Red}, Epilog -> {White, Line[{{0, 180}, {400, 180}}], Text[Style["n=1", Bold, 20], {30, 160}],  Text[Style[ StringForm["n=1+i``", NumberForm[\[Alpha][t], {3, 2}]], Bold, 20], {60, 200}]}]
, {t, 0.000, 1, 0.03}];
ListAnimate[Join[frames, Table[frames[[-1]], 5], Reverse[frames]]]

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
Creative Commons CC-Zero This file is made available under the Creative Commons CC0 1.0 Universal Public Domain Dedication.
The person who associated a work with this deed has dedicated the work to the public domain by waiving all of their rights to the work worldwide under copyright law, including all related and neighboring rights, to the extent allowed by law. You can copy, modify, distribute and perform the work, even for commercial purposes, all without asking permission.

Captions

High absorption create an impedance mismatch that make a material reflective.

Items portrayed in this file

depicts

29 November 2021

image/gif

2,555,875 byte

359 pixel

360 pixel

7221af9eb0d7f1cb9e6e5b7ae398572ed965d7e2

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current14:48, 30 November 2021Thumbnail for version as of 14:48, 30 November 2021360 × 359 (2.44 MB)BertoUploaded own work with UploadWizard

The following page uses this file:

Global file usage

The following other wikis use this file:

Metadata