Size of this preview: 799 × 599 pixels. Other resolutions: 320 × 240 pixels | 640 × 480 pixels | 1,024 × 768 pixels | 1,201 × 901 pixels.
Original file (1,201 × 901 pixels, file size: 448 KB, MIME type: image/gif, looped, 8 frames, 8.0 s)
This is a file from the Wikimedia Commons. Information from its description page there is shown below. Commons is a freely licensed media file repository. You can help. |
Summary
DescriptionKochCube Animation Gray.gif |
English: Animation of quadratic Koch 3D (Recursion levels: 1 to 5). Let the cube have volume V_0. Then the total volume as the number of iterations approaches infinity converges to (172/91)*V_0.
Français : Animation 3D du flocon de Koch quadratique (Niveaux de récusion: 1 à 5) |
Date | |
Source | Own work |
Author | Guillaume Jacquenot |
Source code (MATLAB)
function Res = KochCube(n,KColorMap,Filename_res)
% This function computes the extension of the quadratic type 1 curve of
% Koch snowflake
% It displays the result in MatLab and also generates a 3D obj file.
% To view the obj file result, you can use any 3D file viewer, like MeshLab
%
% Input :
% - n [Optional] : Number of recusion levels
% - KColorMap [Optional] : String containing the name of the colormap to
% be used for representation
% - Filename_res [Optional] : String containing the name of the obj file
% to be created, and also the png file.
% Output :
% - Res : Matrix containing the information to represent the Koch cube
% structure.
% Each row corresponds to a square to be plotted in 3D.
% The three first columns correspond to the center a square.
% The fourth column is the size of the each square.
% The fifth column to the seventh column give the normal of the square
% The eighth column corresponds to a color level. It is used for
% representation purpose.
%
% Guillaume Jacquenot
% guillaume dot jacquenot at gmail dot com
% 2010 10 03
% Define default values if varaibles do not exist
if ~(exist('n','var')==1)
n = 3;
end
if ~(exist('KColorMap','var')==1)
KColorMap = 'gray';
end
if nargin < 3
% Generate a filename for results
Filename_res = ['KochCube_' sprintf('%02d',n) '_' KColorMap ];
if nargin < 1
help(mfilename);
end
end
% Initial pattern. The content of each column is the same as the result
% matrix, whose description is given previously.
Ini = [0.5 0.5 0 1 0 0 1 1];
% Apply a multiplying factor on the size and location of the initial
% pattern to work with integer on vertices.
Ini(1:4) = Ini(1:4) * 3^n;
% Define initial pattern "Ini" as "pat"
pat = Ini;
% Loop on the recursion level
for i=1:n
% Allocate memory for each temporary result / level
tmp = zeros(13^i,8);
% Perform one refinement iteration for each face
for j=1:size(pat,1)
tmp((13*(j-1)+1):(13*j),:) = KochCube_OneIter(pat(j,:));
end
% Set the temporary result "tmp" as "pat"
pat = tmp;
end
% Set the result of the final level to be "Res"
Res = pat;
if ~iscolormap(KColorMap)
error([mfilename ':e0'],...
'KColorMap has to be a valid colormap. See ');
end
% Write the result to an obj file (Use MeshLab, Blender to visualize the
% result
WriteKochCube(Res,n,KColorMap,Filename_reiis);
% Display the result
Res2 = Res;
% Trick to have the same bounding box whatever the recursion level asks.
Res2(:,1:4) = Res2(:,1:4)*3^(5-n);
Faxis = [0 243 0 243 0 125];
DisplayKochCube(Res2,n,KColorMap,Filename_res,Faxis);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function Res = KochCube_OneIter(Ini)
% Performs one iteration
if nargin == 0
Ini = [4.5 4.5 0 9 0 0 1 1];
end
% Define the size of the resulting matrix
Res = zeros(13,8);
Normale = Ini(5:7);
% Compute the central square
Res(1,:) = Ini;
Res(1,1:3) = Res(1,1:3) + Normale*Ini(4)/3;
Res(1,8) = Res(1,8) + 2;
% Compute the 8 squares located around the central square
Res(2:9,:) = repmat(Ini,8,1);
Res(2:9,1:3) = Res(2:9,1:3)+ ...
Generate_pattern_matrix(Normale)*Ini(4)/3;
% Compute the 4 squares located around the central square, and whose normal
% will change
Res(10:13,4) = Ini(4);
Res(10:13,5:7) = Generate_pattern_matrix(Normale,1);
Res(10:13,1:3) = repmat(Ini(1:3),4,1) +...
Res(10:13,5:7)*Ini(4)/6 + ...
repmat(Ini(5:7),4,1)*Ini(4)/6;
Res(10:13,8) = Ini(8)+1;
Res(:,4) = Res(:,4)/3;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function M = Generate_pattern_matrix(Normale,FirstHalf)
% Normale :
% The second argument is used to create or not the first half of the
% matrix M (ie the 4st rows).
M = [1,0,0;-1,0,0;0, 1,0; 0,-1,0;...
1,1,0;-1,1,0;-1,-1,0;1,-1,0;];
if abs(Normale(1))==1
M(:,3) = M(:,1);
M(:,1) = 0;
elseif abs(Normale(2))==1
M(:,3) = M(:,2);
M(:,2) = 0;
end
if nargin==2 && FirstHalf
M(5:end,:)= [];
elseif nargin==2 && ~FirstHalf
M(1:4,:)= [];
end
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function H = DisplayKochCube(Res,n,KColorMap,Filename_res,Faxis)
% Display the Koch Cube
H = figure;
hold on
axis equal
[Vertices,Faces,ColorFaces] = Generate3DKochCube(Res,n,KColorMap);
if n>0
patch('Faces',Faces','Vertices',Vertices,...
'FaceVertexCData',ColorFaces,'FaceColor','flat',...
'FaceAlpha',0.8);
else
patch('Faces',Faces','Vertices',Vertices,...
'FaceVertexCData',ColorFaces);
end
view(3);
axis tight;
if nargin == 5
axis(Faxis)
end
axis off;
if isempty(strfind(Filename_res,'.png'))
Filename_res = [Filename_res '.png'];
end
saveas(gcf,Filename_res,'png');
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function WriteKochCube(Res,n,KColorMap,Obj_filename)
if nargin==1
Obj_filename = 'KochCube.obj';
end
Res = sortrows(Res,8);
[VertTotal,Faces,ColorFaces] = Generate3DKochCube(Res,n,KColorMap);
if isempty(strfind(Obj_filename,'.obj'))
Mtl_filename = [Obj_filename '_material.obj'];
Obj_filename = [Obj_filename '.obj'];
else
Mtl_filename = [Obj_filename(1:end-4) '_material.obj'];
end
nColor = max(Res(:,8));
IColor1 = zeros(1,nColor);
IColor2 = zeros(1,nColor);
for i=1:nColor
IColor1(i) =find(Res(:,8)==i,1,'first');
IColor2(i) =find(Res(:,8)==i,1,'last');
end
fid = fopen(Mtl_filename, 'wt');
fprintf(fid, '# %s\n',Mtl_filename);
fprintf(fid, '#\n');
fprintf(fid, '# File generated with %s\n',mfilename);
fprintf(fid, '# Date : %s\n',datestr(date, 26));
for i=1:nColor
fprintf(fid, 'newmtl C%03d\n',i);
fprintf(fid, 'Ka %f %f %f\n',ColorFaces(IColor1(i),:));
fprintf(fid, 'Kd %f %f %f\n',ColorFaces(IColor1(i),:));
fprintf(fid, 'd 0.2000\n');
fprintf(fid, 'illum 1\n');
end
fclose(fid);
fid = fopen(Obj_filename, 'wt');
fprintf(fid, '# %s\n',Obj_filename);
fprintf(fid, '#\n');
fprintf(fid, '# File generated with %s\n',mfilename);
fprintf(fid, '# Date : %s\n',datestr(date, 26));
fprintf(fid, '# Author : Guillaume Jacquenot\n');
fprintf(fid, '# Koch_cube\n');
fprintf(fid, 'mtllib %s\n',Mtl_filename);
fprintf(fid, 'v %03d %03d %03d\n', VertTotal');
% Normal of each faces has one of the following values
fprintf(fid, 'vn 1.0 0.0 0.0\n');
fprintf(fid, 'vn 0.0 1.0 0.0\n');
fprintf(fid, 'vn 0.0 0.0 1.0\n');
fprintf(fid, 'vn -1.0 0.0 0.0\n');
fprintf(fid, 'vn 0.0 -1.0 0.0\n');
fprintf(fid, 'vn 0.0 0.0 -1.0\n');
% Evaluate the normal of each
NormTotal = Res(:,5:7);
[X,Y] = find(NormTotal);
Norm = Y.*sign(sum(NormTotal,2));
Norm(Norm<0) = 3-Norm(Norm<0);
Norm = repmat(Norm,1,4)';
% Merge node and vertices
nRes = size(Res,1);
Total = zeros(8,nRes);
Total(1:2:7,:) = Faces;
Total(2:2:8,:) = Norm;
% fprintf(fid, 'f %03d//%1d %03d//%1d %03d//%1d\n',Total(1:6,:));
% fprintf(fid, 'f %03d//%1d %03d//%1d %03d//%1d\n',Total([1:2 5:8],:));
for i=1:nColor
fprintf(fid, 'g G%03d\n',i);
fprintf(fid, 'usemtl C%03d\n',i);
fprintf(fid, 'f %03d//%1d %03d//%1d %03d//%1d\n',...
Total(1:6,IColor1(i):IColor2(i)));
fprintf(fid, 'f %03d//%1d %03d//%1d %03d//%1d\n',...
Total([1:2 5:8],IColor1(i):IColor2(i)));
end
fclose(fid);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [Vertices,Faces,ColorFaces] = Generate3DKochCube(Res,n,KColorMap)
if nargin==1
n = max(Res(:,8));
KColorMap = 'summer';
end
nRes = size(Res,1);
Vertices = zeros(4*nRes,3);
for i=1:nRes
verts = repmat(Res(i,1:3),4,1) + ...
Res(i,4)/2 * Generate_pattern_matrix(Res(i,5:7),false);
Vertices(4*(i-1)+1:4*i,:) = verts;
end
Faces = reshape(1:4*nRes,4,nRes);
ColorM = zeros(2*n+1,3);
eval(['ColorM = flipud(' KColorMap '(2*n+1));']);
ColorFaces = ColorM(Res(:,8),:);
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function res = iscolormap(cmap)
% This function returns true if 'cmap' is a valid colormap
LCmap = {...
'autumn'
'bone'
'colorcube'
'cool'
'copper'
'flag'
'gray'
'hot'
'hsv'
'jet'
'lines'
'pink'
'prism'
'spring'
'summer'
'white'
'winter'
};
res = ~isempty(strmatch(cmap,LCmap,'exact'));
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
This diagram was created with MATLAB.
Licensing
I, the copyright holder of this work, hereby publish it under the following licenses:
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported, 2.5 Generic, 2.0 Generic and 1.0 Generic license.
- You are free:
- to share – to copy, distribute and transmit the work
- to remix – to adapt the work
- Under the following conditions:
- attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
- share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
You may select the license of your choice.
Items portrayed in this file
depicts
some value
3 October 2010
image/gif
File history
Click on a date/time to view the file as it appeared at that time.
Date/Time | Thumbnail | Dimensions | User | Comment | |
---|---|---|---|---|---|
current | 22:16, 3 October 2010 | 1,201 × 901 (448 KB) | Gjacquenot | One frame was missing in the first version | |
22:13, 3 October 2010 | 1,201 × 901 (384 KB) | Gjacquenot | {{Information |Description={{en|1=Animation of quadratic Koch 3D (Recusion levels: 1 to 5)}} {{fr|1=Animation 3D du flocon de Koch quadratique (Niveaux de récusion: 1 à 5)}} |Source={{own}} |Author=[][User:Gjacquenot|Gjacquenot] |Date=2010-10-03 |Permis |
File usage
The following 2 pages use this file:
Global file usage
The following other wikis use this file:
- Usage on ru.wikipedia.org
Retrieved from "https://en.wikipedia.org/wiki/File:KochCube_Animation_Gray.gif"