File:Parabolic julia set c = -1.125 + 0.21650635094611*i.png

Original file (2,000 × 1,000 pixels, file size: 19 KB, MIME type: image/png)

Summary

Description
English: parabolic julia set for parameter . It is a root point between two Mandelbrot set components :
  • period 2
  • period 6 components with adress : .
"Julia set ... showing the six rays landing on a period two parabolic orbit. The associated orbit portrait has characteristic arc I = (22/63, 25/63) and valence v = 3 rays per orbit point." [1].
Date
Source Own work
Author Adam majewski
Other versions
  • The filled Julia set for the basilica tuned by the rabbit = c is the center of period 6 component on the period 2 component with internal ray 1/3 c = -1.138000666650965 +0.240332401262098 i
  • Figure 1 from page 2 of Periodic Orbits, Externals Rays and the Mandelbrot Set: An Expository Account by John W. Milnor

Licensing

I, the copyright holder of this work, hereby publish it under the following license:
w:en:Creative Commons
attribution share alike
This file is licensed under the Creative Commons Attribution-Share Alike 3.0 Unported license.
You are free:
  • to share – to copy, distribute and transmit the work
  • to remix – to adapt the work
Under the following conditions:
  • attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
  • share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.

C src code

Src code was formatted with Emacs

/*

  this program draws parabolic Julia sets
  it needs denominator of internal angle !!!

  C is a common point of components for period 2 and  6 (trifurcation) of Mandelbrot set 

  Internal angle = 1/3 :

  here c = exp(2*%pi*%i/3)/4 -1 = 0.21650635094611*%i-1.125
  ( It is a root point of denominator 6 component connected with denominator 2 component of Mandelbrot set )
  denominator 2 parabolic cycle :
  z0:0.1703125096583*%i-1.135614939209353;
  z1:0.13561493920935-0.1703125096583*%i;
  with external rays : (22/63 , 25/63, 37/63 ) landing on z1
  with external rays : (11/63 , 44/63, 58/63 ) landing on z0

  c console program
  -----------------------------------------
  1.ppm file code is  based on the code of Claudio Rocchini
  http://en.wikipedia.org/wiki/Image:Color_complex_plot.jpg
  create 24 bit color graphic file ,  portable pixmap file = PPM 
  see http://en.wikipedia.org/wiki/Portable_pixmap
  to see the file use external application ( graphic viewer)
  I think that creating graphic can't be simpler
  ---------------------------
  2. first it creates data array which is used to store rgb color values of pixels,
  fills tha array with data and after that writes the data from array to pgm file.
  It alows free ( non sequential) access to "pixels"
    
  -------------------------------------------
  Adam Majewski   fraktal.republika.pl 
 
  Sobel filter 
  Gh = sum of six values ( 3 values of matrix are equal to 0 ). Each value is = pixel_color * filter_coefficients 

  gcc e.c -lm -Wall
  gcc e.c -lm -Wall -march=native
  ./a.out

  angled internal adress: 
  from period 1 (thru angle 1/2) to period 2 (thru angle 1/3) to period 6

 
*/
# include <stdio.h>
# include <stdlib.h>
# include <math.h>
# include <complex.h>
# include <string.h>

/* iXmax/iYmax = 1/2 */
# define iSide 1000
# define iXmax (2*iSide) /* height of image in pixels */
# define iYmax iSide
/* fc(z) = z*z + c */
# define Cx -1.125 /* C = Cx + Cy*i */
# define Cy  0.21650635094611
# define AR 0.0014998955  /* PixelWidth*1.5   radius of circle around attractor ZA = target set for attracting points */
# define AR2 AR*AR
//#define alfa (1-sqrt(1-4*Cx))/2 /* attracting or parabolic fixed point z = alfa */
//#define beta (1+sqrt(1-4*Cx))/2 /* repelling or parabolic fixed point z = beta */

/* escape time to infinity */
int GiveExtLastIteration(double _Zx0, double _Zy0,double C_x, double C_y, int iMax, double _ER2)
{ 
  int i;
  double Zx, Zy;
  double Zx2, Zy2; /* Zx2=Zx*Zx;  Zy2=Zy*Zy  */
  Zx=_Zx0; /* initial value of orbit  */
  Zy=_Zy0;
  Zx2=Zx*Zx;
  Zy2=Zy*Zy;
  for (i=0;i<iMax && ((Zx2+Zy2)<_ER2);i++)
    {
      Zy=2*Zx*Zy + C_y;
      Zx=Zx2-Zy2 +C_x;
      Zx2=Zx*Zx;
      Zy2=Zy*Zy;
    };
  return i;
}

/* find attractor ZA  using forward iteration of critical point Z = 0  */
/* if denominator is >1 gives one point from attracting cycle */
double complex GiveAttractor(double _Cx, double _Cy, double ER2, int _IterationMax)
{
  int Iteration;
  double Zx, Zy; /* z = zx+zy*i */
  double Zx2, Zy2; /* Zx2=Zx*Zx;  Zy2=Zy*Zy  */
  /* -- find attractor ZA  using forward iteration of critical point Z = 0  */
  Zx=0.0;
  Zy=0.0;
  Zx2=Zx*Zx;
  Zy2=Zy*Zy;
  for (Iteration=0;Iteration<_IterationMax && ((Zx2+Zy2)<ER2);Iteration++)
    {
      Zy=2*Zx*Zy + _Cy;
      Zx=Zx2-Zy2 + _Cx;
      Zx2=Zx*Zx;
      Zy2=Zy*Zy;
    };
  return Zx+Zy*I;
}

/* attracting time to finite attractor ZA */
int GiveIntLastIteration(double _Zx0, double _Zy0,double C_x, double C_y, int iMax, double _AR2, double _ZAx, double _ZAy )
{ 
  int i;
  double Zx, Zy; /* z = zx+zy*i */
  double Zx2, Zy2; /* Zx2=Zx*Zx;  Zy2=Zy*Zy  */
  double d, dX, dY; /* distance from z to Alpha  */
  Zx=_Zx0; /* initial value of orbit  */
  Zy=_Zy0;
  Zx2=Zx*Zx;
  Zy2=Zy*Zy;
  dX=Zx-_ZAx;
  dY=Zy-_ZAy;
  d=dX*dX+dY*dY;
  for (i=0;i<iMax && (d>_AR2);i++)
    {
      Zy=2*Zx*Zy + C_y;
      Zx=Zx2-Zy2 +C_x;
      Zx2=Zx*Zx;
      Zy2=Zy*Zy;
      dX=Zx-_ZAx;
      dY=Zy-_ZAy;
      d=dX*dX+dY*dY;
    };
  return i;
}

/* gives position of point (iX,iY) in 1D array  ; uses also global variables */
unsigned int f(unsigned int _iX, unsigned int _iY)
{return (_iX + (iYmax-_iY-1)*iXmax );}

/* --------------------------------------------------------------------------------------------------------- */

int main(){
  
  unsigned int denominator = 3;
    
  unsigned int iX,iY, /* indices of 2D virtual array (image) = integer coordinate */
    i, /* index of 1D array  */
    iLength = iXmax*iYmax;/* length of array in bytes = number of bytes = number of pixels of image * number of bytes of color */
  /* world ( double) coordinate = parameter plane*/
  const double dSide = 0.9;
  const double ZxMin=-2*dSide;
  const double ZxMax=2*dSide;
  const double ZyMin=-dSide;
  const double ZyMax=dSide;
  double PixelWidth=(ZxMax-ZxMin)/iXmax;
  double PixelHeight=(ZyMax-ZyMin)/iYmax;
  /* */
  double Zx, Zy;    /* Z=Zx+Zy*i   */
  double complex ZA;  /* atractor ZA = ZAx + ZAy*i */
  /* */
  
  const double EscapeRadius=80.0; /* radius of circle around origin; its complement is a target set for escaping points */
  double ER2=EscapeRadius*EscapeRadius;
  
  const int IterationMax=60,
    IterationMaxBig= 1000001;
  int eLastIteration, iLastIteration;
  /* sobel filter */
  unsigned char G, Gh, Gv; 
  /* color */
  unsigned char color[]={255,230,180}; /* shades of gray used in image */
  const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ;  it is 8 bit color file */
  

  /* dynamic 1D arrays for colors ( shades of gray ) */
  unsigned char *data, *edge;
  data = malloc( iLength * sizeof(unsigned char) );
  edge = malloc( iLength * sizeof(unsigned char) );
  if (data == NULL || edge==NULL)
    {
      fprintf(stderr," Could not allocate memory");
      getchar(); 
      return 1;
    }
  else printf(" memory is OK\n");

   
 
  
  ZA = GiveAttractor( Cx, Cy, ER2, IterationMaxBig); /* find attractor ZA  using forward iteration of critical point Z = 0  */

  printf(" fill the data array \n");
  for(iY=0;iY<iYmax;++iY){ 
    Zy=ZyMin + iY*PixelHeight; /*  */
    if (fabs(Zy)<PixelHeight/2) Zy=0.0; /*  */
    printf(" row %u from %u \n",iY, iYmax);    
    for(iX=0;iX<iXmax;++iX){ 
      Zx=ZxMin + iX*PixelWidth;
      eLastIteration = GiveExtLastIteration(Zx, Zy, Cx, Cy, IterationMax, ER2 );
      i= f(iX,iY); /* compute index of 1D array from indices of 2D array */
      if ( IterationMax != eLastIteration ) 
	{data[i]=245;} /* exterior */
      else /* interior */
	{ iLastIteration = GiveIntLastIteration(Zx, Zy, Cx, Cy, IterationMaxBig, AR2, creal(ZA), cimag(ZA));
          data[i]=color[iLastIteration % denominator];} /*   */
      /*  if (Zx>0 && Zy>0) data[i]=255-data[i];    check the orientation of Z-plane by marking first quadrant */
    }
  }

  printf(" find boundaries in data array using  Sobel filter\n");   

  for(iY=1;iY<iYmax-1;++iY){ 
    for(iX=1;iX<iXmax-1;++iX){ 
      Gv= data[f(iX-1,iY+1)] + 2*data[f(iX,iY+1)] + data[f(iX-1,iY+1)] - data[f(iX-1,iY-1)] - 2*data[f(iX-1,iY)] - data[f(iX+1,iY-1)];
      Gh= data[f(iX+1,iY+1)] + 2*data[f(iX+1,iY)] + data[f(iX-1,iY-1)] - data[f(iX+1,iY-1)] - 2*data[f(iX-1,iY)] - data[f(iX-1,iY-1)];
      G = sqrt(Gh*Gh + Gv*Gv);
      i= f(iX,iY); /* compute index of 1D array from indices of 2D array */
      if (G==0) {edge[i]=255;} /* background */
      else {edge[i]=0;}  /* boundary */
    }
  }

  // printf(" copy boundaries from edge to data array \n");
  //  for(iY=1;iY<iYmax-1;++iY){ 
  //   for(iX=1;iX<iXmax-1;++iX)
  //    {i= f(iX,iY); /* compute index of 1D array from indices of 2D array */
  //	if (edge[i]==0) data[i]=0;}}

  /* ---------- file  -------------------------------------*/
  printf(" save  data array to the file \n");
  FILE * fp;
  char name [10]; /* name of file */
  i = sprintf(name,"e%2.9f",AR); /* result (is saved in i) but is not used */
  char *filename =strcat(name,".pgm");
  char *comment="# C=";/* comment should start with # */
  /* save image to the pgm file  */      
  fp= fopen(filename,"wb"); /*create new file,give it a name and open it in binary mode  */
  fprintf(fp,"P5\n %s\n %u\n %u\n %u\n",comment,iXmax,iYmax,MaxColorComponentValue);  /*write header to the file*/
  fwrite(edge,iLength,1,fp);  /*write image data bytes to the file in one step */
  printf("File %s saved. \n", filename);
  fclose(fp);

  /* --------------free memory ---------------------*/
  free(data);
  free(edge);
  
  

  return 0;
}

References

  1. Periodic Orbits, Externals Rays and the Mandelbrot Set: An Expository Account John W. Milnor

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

depicts

13 January 2012

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current19:17, 30 May 2014Thumbnail for version as of 19:17, 30 May 20142,000 × 1,000 (19 KB)JeffyPI'm here to make the world a smaller place ☺
17:27, 13 January 2012Thumbnail for version as of 17:27, 13 January 20122,000 × 1,000 (22 KB)Soul windsurfer

The following 2 pages use this file:

Global file usage

The following other wikis use this file: