In probability theory, Gauss's inequality (or the Gauss inequality) gives an upper bound on the probability that a unimodal random variable lies more than any given distance from its mode.

Let X be a unimodal random variable with mode m, and let τ 2 be the expected value of (X − m)2. (τ 2 can also be expressed as (μ − m)2 + σ 2, where μ and σ are the mean and standard deviation of X.) Then for any positive value of k,

The theorem was first proved by Carl Friedrich Gauss in 1823.

Extensions to higher-order moments

edit

Winkler in 1866 extended Gauss's inequality to rth moments [1] where r > 0 and the distribution is unimodal with a mode of zero. This is sometimes called Camp–Meidell's inequality.[2][3]

 
 

Gauss's bound has been subsequently sharpened and extended to apply to departures from the mean rather than the mode due to the Vysochanskiï–Petunin inequality. The latter has been extended by Dharmadhikari and Joag-Dev[4]

 

where s is a constant satisfying both s > r + 1 and s(s − r − 1) = rr and r > 0.

It can be shown that these inequalities are the best possible and that further sharpening of the bounds requires that additional restrictions be placed on the distributions.

See also

edit

References

edit
  1. ^ Winkler A. (1886) Math-Natur theorie Kl. Akad. Wiss Wien Zweite Abt 53, 6–41
  2. ^ Pukelsheim, Friedrich (May 1994). "The Three Sigma Rule". The American Statistician. 48 (2): 88–91. doi:10.1080/00031305.1994.10476030. ISSN 0003-1305.
  3. ^ Bickel, Peter J.; Krieger, Abba M. (1992). "Extensions of Chebyshev's Inequality with Applications" (PDF). Probability and Mathematical Statistics. 13 (2): 293–310. ISSN 0208-4147. Retrieved 6 October 2012.
  4. ^ Dharmadhikari, S. W.; Joag-Dev, K. (1985). "The Gauss–Tchebyshev inequality for unimodal distributions" (PDF). Teoriya Veroyatnostei i ee Primeneniya. 30 (4): 817–820.
  • Gauss, C. F. (1823). "Theoria Combinationis Observationum Erroribus Minimis Obnoxiae, Pars Prior". Commentationes Societatis Regiae Scientiarum Gottingensis Recentiores. 5.
  • Upton, Graham; Cook, Ian (2008). "Gauss inequality". A Dictionary of Statistics. Oxford University Press.
  • Sellke, T.M.; Sellke, S.H. (1997). "Chebyshev inequalities for unimodal distributions". American Statistician. 51 (1). American Statistical Association: 34–40. doi:10.2307/2684690. JSTOR 2684690.
  • Pukelsheim, F. (1994). "The Three Sigma Rule". American Statistician. 48 (2). American Statistical Association: 88–91. doi:10.2307/2684253. JSTOR 2684253.