Generalized inverse Gaussian distribution

In probability theory and statistics, the generalized inverse Gaussian distribution (GIG) is a three-parameter family of continuous probability distributions with probability density function

Generalized inverse Gaussian
Probability density function
Probability density plots of GIG distributions
Parameters a > 0, b > 0, p real
Support x > 0
PDF
Mean

Mode
Variance
MGF
CF

where Kp is a modified Bessel function of the second kind, a > 0, b > 0 and p a real parameter. It is used extensively in geostatistics, statistical linguistics, finance, etc. This distribution was first proposed by Étienne Halphen.[1][2][3] It was rediscovered and popularised by Ole Barndorff-Nielsen, who called it the generalized inverse Gaussian distribution. Its statistical properties are discussed in Bent Jørgensen's lecture notes.[4]

Properties

edit

Alternative parametrization

edit

By setting   and  , we can alternatively express the GIG distribution as

 

where   is the concentration parameter while   is the scaling parameter.

Summation

edit

Barndorff-Nielsen and Halgreen proved that the GIG distribution is infinitely divisible.[5]

Entropy

edit

The entropy of the generalized inverse Gaussian distribution is given as[citation needed]

 

where   is a derivative of the modified Bessel function of the second kind with respect to the order   evaluated at  

Characteristic Function

edit

The characteristic of a random variable   is given as(for a derivation of the characteristic function, see supplementary materials of [6] )

 

for   where   denotes the imaginary number.

edit

Special cases

edit

The inverse Gaussian and gamma distributions are special cases of the generalized inverse Gaussian distribution for p = −1/2 and b = 0, respectively.[7] Specifically, an inverse Gaussian distribution of the form

 

is a GIG with  ,  , and  . A Gamma distribution of the form

 

is a GIG with  ,  , and  .

Other special cases include the inverse-gamma distribution, for a = 0.[7]

Conjugate prior for Gaussian

edit

The GIG distribution is conjugate to the normal distribution when serving as the mixing distribution in a normal variance-mean mixture.[8][9] Let the prior distribution for some hidden variable, say  , be GIG:

 

and let there be   observed data points,  , with normal likelihood function, conditioned on  

 

where   is the normal distribution, with mean   and variance  . Then the posterior for  , given the data is also GIG:

 

where  .[note 1]

Sichel distribution

edit

The Sichel distribution results when the GIG is used as the mixing distribution for the Poisson parameter  .[10][11]

Notes

edit
  1. ^ Due to the conjugacy, these details can be derived without solving integrals, by noting that
     .
    Omitting all factors independent of  , the right-hand-side can be simplified to give an un-normalized GIG distribution, from which the posterior parameters can be identified.

References

edit
  1. ^ Seshadri, V. (1997). "Halphen's laws". In Kotz, S.; Read, C. B.; Banks, D. L. (eds.). Encyclopedia of Statistical Sciences, Update Volume 1. New York: Wiley. pp. 302–306.
  2. ^ Perreault, L.; Bobée, B.; Rasmussen, P. F. (1999). "Halphen Distribution System. I: Mathematical and Statistical Properties". Journal of Hydrologic Engineering. 4 (3): 189. doi:10.1061/(ASCE)1084-0699(1999)4:3(189).
  3. ^ Étienne Halphen was the grandson of the mathematician Georges Henri Halphen.
  4. ^ Jørgensen, Bent (1982). Statistical Properties of the Generalized Inverse Gaussian Distribution. Lecture Notes in Statistics. Vol. 9. New York–Berlin: Springer-Verlag. ISBN 0-387-90665-7. MR 0648107.
  5. ^ Barndorff-Nielsen, O.; Halgreen, Christian (1977). "Infinite Divisibility of the Hyperbolic and Generalized Inverse Gaussian Distributions". Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete. 38: 309–311. doi:10.1007/BF00533162.
  6. ^ Pal, Subhadip; Gaskins, Jeremy (23 May 2022). "Modified Pólya-Gamma data augmentation for Bayesian analysis of directional data". Journal of Statistical Computation and Simulation. 92 (16): 3430–3451. doi:10.1080/00949655.2022.2067853. ISSN 0094-9655. S2CID 249022546.
  7. ^ a b Johnson, Norman L.; Kotz, Samuel; Balakrishnan, N. (1994), Continuous univariate distributions. Vol. 1, Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics (2nd ed.), New York: John Wiley & Sons, pp. 284–285, ISBN 978-0-471-58495-7, MR 1299979
  8. ^ Karlis, Dimitris (2002). "An EM type algorithm for maximum likelihood estimation of the normal–inverse Gaussian distribution". Statistics & Probability Letters. 57 (1): 43–52. doi:10.1016/S0167-7152(02)00040-8.
  9. ^ Barndorf-Nielsen, O. E. (1997). "Normal Inverse Gaussian Distributions and stochastic volatility modelling". Scand. J. Statist. 24 (1): 1–13. doi:10.1111/1467-9469.00045.
  10. ^ Sichel, Herbert S. (1975). "On a distribution law for word frequencies". Journal of the American Statistical Association. 70 (351a): 542–547. doi:10.1080/01621459.1975.10482469.
  11. ^ Stein, Gillian Z.; Zucchini, Walter; Juritz, June M. (1987). "Parameter estimation for the Sichel distribution and its multivariate extension". Journal of the American Statistical Association. 82 (399): 938–944. doi:10.1080/01621459.1987.10478520.

See also

edit