Epsilon Reticuli, Latinized from ε Reticuli, is a double star approximately 60 light-years away in the southern constellation of Reticulum. The brighter member is visible to the naked eye with an apparent visual magnitude of 4.44. The primary component is an orange subgiant, while the secondary is a white dwarf. The two stars share a common motion through space and hence most likely form a binary star system.[10] The brighter star should be easily visible without optical aid under dark skies in the southern hemisphere. In 2000, an extrasolar planet was confirmed to be orbiting the primary star in the system.
Observation data Epoch J2000 Equinox J2000 | |
---|---|
Constellation | Reticulum |
Right ascension | 4h 16m 29.028s[1] |
Declination | –59° 18′ 07.76″[1] |
Apparent magnitude (V) | 4.44[2] / 12.5 |
Characteristics | |
Spectral type | K2 III-IV + DA3.3[3] |
U−B color index | +1.07[2] |
B−V color index | +1.08[2] |
Astrometry | |
Radial velocity (Rv) | +29.3[4] km/s |
Proper motion (μ) | RA: −47.785 mas/yr[1] Dec.: −167.806 mas/yr[1] |
Parallax (π) | 54.2286 ± 0.1019 mas[1] |
Distance | 60.1 ± 0.1 ly (18.44 ± 0.03 pc) |
Absolute magnitude (MV) | 0.87[5] |
Details | |
ε Reticuli A | |
Mass | 1.46±0.01[6] M☉ |
Radius | 3.18±0.08[6] R☉ |
Luminosity | 6.2±0.6[6] L☉ |
Surface gravity (log g) | 3.76±0.05[6] cgs |
Temperature | 4,961±28[6] K |
Metallicity [Fe/H] | 0.26±0.07[6] dex |
Rotational velocity (v sin i) | 2.07±0.42[6] km/s |
Age | 2.89±0.06[6] Gyr |
ε Reticuli B | |
Mass | 0.60±0.02[3] M☉ |
Radius | 0.0132±0.0002[3] R☉ |
Surface gravity (log g) | 7.98±0.02[3] cgs |
Temperature | 15,310±350[3] K |
Age | 1.5[3] Gyr |
Other designations | |
Epsilon Reticuli A: ε Ret, CPD−59°324, GJ 9153, HD 27442, HIP 19921, HR 1355, WDS J04165-5918A[8] | |
Epsilon Reticuli B: ε Reticuli B, CPD−59°324B, HD 27442B, WDS J04165-5918B, WD 0415-594[9] | |
Database references | |
SIMBAD | data |
Star system
editThe primary component, Epsilon Reticuli A, is a subgiant star with a stellar classification of K2III–IV, indicating that the fusing of hydrogen in its core is coming to an end and it is in the process of expanding to a red giant. With an estimated mass of about 1.5 times the solar mass, it was probably an F0 star while in the main sequence.[3] It has a radius of 3.18 times the solar radius, a luminosity of 6.2 the solar luminosity and an effective temperature of 4,961 K. As is typical of stars with giant planets, it has a high metallicity, with an iron abundance 82% larger than the Sun's.[6]
The secondary star, Epsilon Reticuli B, is known as a visual companion since 1930, and in 2006 was confirmed as a physical companion on the basis of its common proper motion.[11][12] It was noted that its color indices are incompatible with a main sequence object, but are consistent with a white dwarf.[12] This was confirmed in 2007 by spectroscopic observations, that showed the absorption spectrum typical of a hydrogen-rich white dwarf (spectral type DA).[10][13] This star has a visual apparent magnitude of 12.5 and is located at a separation of 13 arcseconds, corresponding to a projected physical separation of 240 AU and an orbital period of more than 2,700 years.[3]
It is estimated that Epsilon Reticuli B has a mass of 0.60 M☉ and a radius of 0.0132 R☉. Originally, when it was in the main sequence, it probably had a spectral type of A5 and a mass of 1.9 M☉, and spent 1.3 billion years on this phase. From a measured effective temperature of 15,310 K, it has a cooling age (time spent as a white dwarf) of 200 million years, corresponding to a total age of 1.5 billion years. This age is inconsistent with the primary estimated age of 2.8 billion years, which suggests a smaller mass for the white dwarf or a larger mass for the primary.[3]
Planetary system
editOn December 11, 2000, a team of astronomers announced the discovery of a planet Epsilon Reticuli b.[14] With a minimum mass of 1.17 that of Jupiter, the planet moves around Epsilon Reticuli with an average separation of 1.16 AU. The eccentricity of the planet is extremely low (at 0.06), and it completes an orbit every 418 days (or 1.13 years).
Stability analysis shows that the planet's Lagrangian points would be stable enough to host Earth-sized planets, though as yet no trojan planets have been detected in this system.[15]
Companion (in order from star) |
Mass | Semimajor axis (AU) |
Orbital period (days) |
Eccentricity | Inclination | Radius |
---|---|---|---|---|---|---|
b | ≥1.55±0.07 MJ | 1.269±0.001 | 429.1±0.7 | 0.057±0.037 | — | — |
References
edit- ^ a b c d Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
- ^ a b c Johnson, H. L.; et al. (1966), "UBVRIJKL photometry of the bright stars", Communications of the Lunar and Planetary Laboratory, 4 (99): 99, Bibcode:1966CoLPL...4...99J.
- ^ a b c d e f g h i Farihi, J.; Burleigh, M. R.; Holberg, J. B.; Casewell, S. L.; Barstow, M. A. (November 2011). "Evolutionary constraints on the planet-hosting subgiant ε Reticulum from its white dwarf companion". Monthly Notices of the Royal Astronomical Society. 417 (3): 1735–1741. arXiv:1104.0925. Bibcode:2011MNRAS.417.1735F. doi:10.1111/j.1365-2966.2011.19354.x. S2CID 119248128.
- ^ Wilson, Ralph Elmer (1953), "General Catalogue of Stellar Radial Velocities", Carnegie Institute Washington D.C. Publication, Washington: Carnegie Institution of Washington, Bibcode:1953GCRV..C......0W.
- ^ Elgarøy, Øystein; Engvold, Oddbjørn; Lund, Niels (March 1999), "The Wilson-Bappu effect of the MgII K line - dependence on stellar temperature, activity and metallicity", Astronomy and Astrophysics, 343: 222–228, Bibcode:1999A&A...343..222E.
- ^ a b c d e f g h i Jofré, E.; et al. (February 2015), "Stellar parameters and chemical abundances of 223 evolved stars with and without planets", Astronomy & Astrophysics, 574: 46, arXiv:1410.6422, Bibcode:2015A&A...574A..50J, doi:10.1051/0004-6361/201424474, S2CID 53666931, A50.
- ^ "** JSP 56". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2020-08-22.
- ^ "Epsilon Reticuli". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2020-08-22.
- ^ "Epsilon Reticuli B". SIMBAD. Centre de données astronomiques de Strasbourg. Retrieved 2020-08-22.
- ^ a b Chauvin, G.; Lagrange, A.-M.; Udry, S.; Mayor, M. (2007), "Characterization of the long-period companions of the exoplanet host stars: HD 196885, HD 1237 and HD 27442", Astronomy and Astrophysics, 475 (2): 723–727, arXiv:0710.5918, Bibcode:2007A&A...475..723C, doi:10.1051/0004-6361:20067046, S2CID 16950822.
- ^ Raghavan; et al. (2006). "Two Suns in The Sky: Stellar Multiplicity in Exoplanet Systems". The Astrophysical Journal. 646 (1): 523–542. arXiv:astro-ph/0603836. Bibcode:2006ApJ...646..523R. doi:10.1086/504823. S2CID 5669768.
- ^ a b Chauvin, G.; Lagrange, A.-M.; Udry, S.; Fusco, T.; Galland, F.; Naef, D.; Beuzit, J.-L.; Mayor, M. (2006). "Probing long-period companions to planetary hosts. VLT and CFHT near infrared coronographic imaging surveys". Astronomy and Astrophysics. 456 (3): 1165–1172. arXiv:astro-ph/0606166. Bibcode:2006A&A...456.1165C. doi:10.1051/0004-6361:20054709. S2CID 15611548.
- ^ Mugrauer, M.; Neuhäuser, R.; Mazeh, T. (2007). "The multiplicity of exoplanet host stars. Spectroscopic confirmation of the companions GJ 3021 B and HD 27442 B, one new planet host triple-star system, and global statistics". Astronomy and Astrophysics. 469 (2): 755–770. arXiv:astro-ph/0703795. Bibcode:2007A&A...469..755M. doi:10.1051/0004-6361:20065883. S2CID 204926851.
- ^ Butler, R. P.; et al. (2001). "Two New Planets from the Anglo-Australian Planet Search". The Astrophysical Journal. 555 (1): 410–417. Bibcode:2001ApJ...555..410B. doi:10.1086/321467. hdl:2299/137. S2CID 122572834.
- ^ Schwarz; Dvorak, R.; Süli, Á.; Érdi, B. (2007). "Survey of the stability region of hypothetical habitable Trojan planets" (PDF). Astronomy and Astrophysics. 474 (3): 1023–1029. Bibcode:2007A&A...474.1023S. doi:10.1051/0004-6361:20077994.
- ^ Wittenmyer, Robert A.; et al. (2020). "Cool Jupiters greatly outnumber their toasty siblings: occurrence rates from the Anglo-Australian Planet Search". Monthly Notices of the Royal Astronomical Society. 492 (1): 377–383. arXiv:1912.01821. Bibcode:2020MNRAS.492..377W. doi:10.1093/mnras/stz3436.
External links
edit- "Epsilon Reticuli". solstation. Retrieved 27 November 2013.