Harish-Chandra's c-function

(Redirected from Harish-Chandra c-function)

In mathematics, Harish-Chandra's c-function is a function related to the intertwining operator between two principal series representations, that appears in the Plancherel measure for semisimple Lie groups. Harish-Chandra (1958a, 1958b) introduced a special case of it defined in terms of the asymptotic behavior of a zonal spherical function of a Lie group, and Harish-Chandra (1970) introduced a more general c-function called Harish-Chandra's (generalized) C-function. Gindikin and Karpelevich (1962, 1969) introduced the Gindikin–Karpelevich formula, a product formula for Harish-Chandra's c-function.

Gindikin–Karpelevich formula

edit

The c-function has a generalization cw(λ) depending on an element w of the Weyl group. The unique element of greatest length s0, is the unique element that carries the Weyl chamber   onto  . By Harish-Chandra's integral formula, cs0 is Harish-Chandra's c-function:

 

The c-functions are in general defined by the equation

 

where ξ0 is the constant function 1 in L2(K/M). The cocycle property of the intertwining operators implies a similar multiplicative property for the c-functions:

 

provided

 

This reduces the computation of cs to the case when s = sα, the reflection in a (simple) root α, the so-called "rank-one reduction" of Gindikin & Karpelevich (1962). In fact the integral involves only the closed connected subgroup Gα corresponding to the Lie subalgebra generated by   where α lies in Σ0+. Then Gα is a real semisimple Lie group with real rank one, i.e. dim Aα = 1, and cs is just the Harish-Chandra c-function of Gα. In this case the c-function can be computed directly and is given by

 

where

 

and α0=α/〈α,α〉.

The general Gindikin–Karpelevich formula for c(λ) is an immediate consequence of this formula and the multiplicative properties of cs(λ), as follows:

 

where the constant c0 is chosen so that c(–iρ)=1 (Helgason 2000, p.447).

Plancherel measure

edit

The c-function appears in the Plancherel theorem for spherical functions, and the Plancherel measure is 1/c2 times Lebesgue measure.

p-adic Lie groups

edit

There is a similar c-function for p-adic Lie groups. Macdonald (1968, 1971) and Langlands (1971) found an analogous product formula for the c-function of a p-adic Lie group.

References

edit