Equisetum (/ˌɛkwɪˈstəm/; horsetail) is the only living genus in Equisetaceae, a family of vascular plants that reproduce by spores rather than seeds.[2]

Equisetum
Temporal range: Early Jurassic–present
Vegetative stems of Equisetum telmateia (great horsetail), showing whorls of branches and the tiny dark-tipped leaves
Scientific classification Edit this classification
Kingdom: Plantae
Clade: Tracheophytes
Division: Polypodiophyta
Class: Polypodiopsida
Subclass: Equisetidae
Order: Equisetales
Family: Equisetaceae
Genus: Equisetum
L.
Type species
Equisetum arvense
Species

See text

Synonyms[1]
  • Allostelites Börner
  • Hippochaete Milde

Equisetum is a "living fossil", the only living genus of the entire subclass Equisetidae, which for over 100 million years was much more diverse and dominated the understorey of late Paleozoic forests. Some equisetids were large trees reaching to 30 m (98 ft) tall.[3] The genus Calamites of the family Calamitaceae, for example, is abundant in coal deposits from the Carboniferous period. The pattern of spacing of nodes in horsetails, wherein those toward the apex of the shoot are increasingly close together, is said to have inspired John Napier to invent logarithms.[4] Modern horsetails first appeared during the Jurassic period.

A superficially similar but entirely unrelated flowering plant genus, mare's tail (Hippuris), is occasionally referred to as "horsetail", and adding to confusion, the name "mare's tail" is sometimes applied to Equisetum.[5]

Etymology

edit

The name "horsetail", often used for the entire group, arose because the branched species somewhat resemble a horse's tail. Similarly, the scientific name Equisetum is derived from the Latin equus ('horse') + seta ('bristle').[6]

Other names include candock for branching species, marestail, puzzlegrass, and snake grass or scouring-rush for unbranched or sparsely branched species. The latter name refers to the rush-like appearance of the plants and to the fact that the stems are coated with abrasive silicates, making them useful for scouring (cleaning) metal items such as cooking pots or drinking mugs, particularly those made of tin. Equisetum hyemale, rough horsetail, is still boiled and then dried in Japan to be used for the final polishing process on woodcraft to produce a smooth finish.[7] In German, the corresponding name is Zinnkraut ('tin-herb'). In Spanish-speaking countries, these plants are known as cola de caballo ('horsetail').

Description

edit
 
Equisetum arvense (field horsetail)

Equisetum leaves are greatly reduced and usually non-photosynthetic. They contain a single, non-branching vascular trace, which is the defining feature of microphylls. However, it has recently been recognised that horsetail microphylls are probably not ancestral as in lycophytes (clubmosses and relatives), but rather derived adaptations, evolved by reduction of megaphylls.[8]

The leaves of horsetails are arranged in whorls fused into nodal sheaths. The stems are usually green and photosynthetic, and are distinctive in being hollow, jointed and ridged (with sometimes 3 but usually 6–40 ridges). There may or may not be whorls of branches at the nodes.[9] Unusually, the branches often emerge below the leaves in an internode, and grow from buds between their bases.

 
Vegetative stem:
B = branch in whorl
I = internode
L = leaves
N = node
 
Strobilus of Equisetum braunii, terminal on an unbranched stem
 
Microscopic view of Equisetum hyemale (rough horsetail) (2-1-0-1-2 is one millimetre with 120th graduation).
The small white protuberances are accumulated silicates on cells.

Spores

edit

The spores are borne under sporangiophores in strobili, cone-like structures at the tips of some of the stems. In many species the cone-bearing shoots are unbranched, and in some (e.g. E. arvense, field horsetail) they are non-photosynthetic, produced early in spring. In some other species (e.g. E. palustre, marsh horsetail) they are very similar to sterile shoots, photosynthetic and with whorls of branches.[10]: 12–15 

Horsetails are mostly homosporous, though in the field horsetail, smaller spores give rise to male prothalli. The spores have four elaters that act as moisture-sensitive springs, assisting spore dispersal through crawling and hopping motions after the sporangia have split open longitudinally.[11] They are photosynthetic and have a lifespan that is usually two weeks at most, but will germinate immediately under humid conditions and develop into a gametophyte.[12]

Cell walls

edit

The crude cell extracts of all Equisetum species tested contain mixed-linkage glucan : xyloglucan endotransglucosylase (MXE) activity.[13] This is a novel enzyme and is not known to occur in any other plants. In addition, the cell walls of all Equisetum species tested contain mixed-linkage glucan (MLG), a polysaccharide which, until recently, was thought to be confined to the Poales.[14][15] The evolutionary distance between Equisetum and the Poales suggests that each evolved MLG independently. The presence of MXE activity in Equisetum suggests that they have evolved MLG along with some mechanism of cell wall modification. Non-Equisetum land plants tested lack detectable MXE activity. An observed negative correlation between XET activity and cell age led to the suggestion that XET is catalysing endotransglycosylation in controlled wall-loosening during cell expansion.[16] The lack of MXE in the Poales suggests that there it must play some other, currently unknown, role. Due to the correlation between MXE activity and cell age, MXE has been proposed to promote the cessation of cell expansion.[citation needed]

Taxonomy

edit

Species

edit

Currently, 18 species of Equisetum are accepted by Plants of the World Online.[1] The living members are divided into three distinct lineages, which are usually treated as subgenera. The name of the type subgenus, Equisetum, means "horse hair" in Latin, while the name of the other large subgenus, Hippochaete, means "horse hair" in Greek. Hybrids are common, but hybridization has only been recorded between members of the same subgenus.[17]

Two Equisetum plants are sold commercially under the names Equisetum japonicum (barred horsetail) and Equisetum camtschatcense (Kamchatka horsetail). These are both types of E. hyemale var. hyemale, although they may also be listed as separate varieties of E. hyemale.[18][citation needed]

 
Equisetum hyemale (rough horsetail) in Parc floral de Paris

Evolutionary history

edit

The oldest remains of modern horsetails of the genus Equisetum first appear in the Early Jurassic, represented by Equisetum dimorphum from the Early Jurassic of Patagonia[19] and Equisetum laterale from the Early-Middle Jurassic of Australia.[20][21] Silicified remains of Equisetum thermale from the Late Jurassic of Argentina exhibit all the morphological characters of modern members of the genus.[22] The estimated split between Equisetum bogotense and all other living Equisetum is estimated to have occurred no later than the Early Jurassic.[21]

Subgenus Paramochaete

edit
  • Equisetum bogotense Kunth – Andean horsetail; upland South America up to Costa Rica; includes E. rinihuense, sometimes treated as a separate species. Previously included in subg. Equisetum, but Christenhusz et al. (2019)[23] transfer this here, as E. bogotense appears to be sister to all the remaining species in the genus.

Subgenus Equisetum

edit
  • Equisetum arvense L. – field horsetail or common horsetail; circumboreal down through temperate zones
  • Equisetum braunii Milde – northern giant horsetail, syn. E. telmateia subsp. braunii (Milde) Hauke.; west coast of North America
  • Equisetum diffusum D.Don – Himalayan horsetail; Himalayan India and China and adjacent nations above about 450 metres (1,480 ft)
  • Equisetum fluviatile L. – water horsetail; circumboreal down through temperate zones
  • Equisetum palustre L. – marsh horsetail; circumboreal down through temperate zones
  • Equisetum pratense Ehrh. – shady horsetail, meadow horsetail, shade horsetail; circumboreal except for tundra down through cool temperate zones
  • Equisetum sylvaticum L. – wood horsetail; circumboreal down through cool temperate zones, more restricted in east Asia
  • Equisetum telmateia Ehrh. – great horsetail; Europe to Asia Minor and north Africa. The former North American subspecies Equisetum telmateia subsp. braunii (Milde) Hauke is now treated as a separate species Equisetum braunii Milde[23][1]
 
Equisetum ramosissimum in the Czech Republic

Subgenus Hippochaete

edit
  • Equisetum giganteum L. – southern giant horsetail or giant horsetail; temperate to tropical South America and Central America north to southern Mexico
  • Equisetum hyemale L. – rough horsetail; most of non-tropical Old World. The former North American subspecies Equisetum hyemale subsp. affine (Engelm.) A.A.Eat. is now treated as a separate species Equisetum prealtum Raf.[23][1]
  • Equisetum laevigatum A.Braun – smooth horsetail, smooth scouringrush; western 3/4 of North America down into northwestern Mexico; also sometimes known as Equisetum kansanum
  • Equisetum myriochaetum Schltdl. & Cham. – Mexican giant horsetail; from central Mexico south to Peru
  • Equisetum praealtum Raf. – scouringrush horsetail, syn. E. hyemale subsp. affine (Engelm.) A.A.Eat.; temperate North America
  • Equisetum ramosissimum Desf. (including E. debile) – branched horsetail; Asia, Europe, Africa, southwest Pacific islands
  • Equisetum scirpoides Michx. – dwarf horsetail, dwarf scouringrush; northern (cool temperate) zones worldwide
  • Equisetum variegatum Schleich. ex Weber & Mohr – variegated horsetail, variegated scouringrush; northern (cool temperate) zones worldwide, except for northeasternmost Asia
  • Equisetum xylochaetum Mett. – Atacama Desert giant horsetail; southern Peru, northern Chile

Unplaced to subgenus

edit

Named hybrids

edit
 
Equisetum × moorei (E. hyemale × E. ramosissiumum)

Hybrids between species in subgenus Equisetum

edit

Hybrids between species in subgenus Hippochaete

edit

Phylogeny

edit
Christenhusz et al. 2019[23] Nitta et al. 2022[24] and Fern Tree of life[25]
Equisetum

Distribution and ecology

edit

The genus Equisetum as a whole, while concentrated in the non-tropical northern hemisphere, is near-cosmopolitan, being absent naturally only from Antarctica, Australia, New Zealand, and the islands of the Pacific Ocean. They are most common in northern Europe, with ten species (E. arvense, E. fluviatile, E. hyemale, E. palustre, E. pratense, E. ramosissimum, E. scirpoides, E. sylvaticum, E. telmateia, and E. variegatum); Great Britain has nine of these species, missing only E. scirpoides of the European list.[26][9] Northern North America (Canada and the northernmost United States), also has nine species (E. arvense, E. fluviatile, E. laevigatum, E. palustre, E. praealtum, E. pratense, E. scirpoides, E. sylvaticum, and E. variegatum). Only five (E. bogotense, E. giganteum, E. myriochaetum, E. ramosissimum, and E. xylochaetum) of the eighteen species are known to be native south of the Equator.

They are perennial plants, herbaceous and dying back in winter in most temperate species, or evergreen as most tropical species and the temperate species E. hyemale (rough horsetail), E. ramosissimum (branched horsetail), E. scirpoides (dwarf horsetail) and E. variegatum (variegated horsetail). They typically grow 20 cm–1.5 m (8 in–5 ft) tall, though the subtropical "giant horsetails" are recorded to grow as high as 5 m (16 ft) (E. giganteum, southern giant horsetail) or 8 m (26 ft) (E. myriochaetum, Mexican giant horsetail), and allegedly even more.[27]

One species, Equisetum fluviatile, is an emergent aquatic, rooted in water with shoots growing into the air. The stalks arise from rhizomes that are deep underground and difficult to dig out. Field horsetail (E. arvense) can be a nuisance weed, readily regrowing from the rhizome after being pulled out. It is unaffected by many herbicides designed to kill seed plants.[28][citation needed] Since the stems have a waxy coat, the plant is resistant to contact weedkillers like glyphosate.[29] However, as E. arvense prefers an acid soil, lime may be used to assist in eradication efforts to bring the soil pH to 7 or 8.[30] Members of the genus have been declared noxious weeds in Australia and in the US state of Oregon.[31][32]

All the Equisetum are classed as "unwanted organisms" in New Zealand and are listed on the National Pest Plant Accord.[33]

Consumption

edit

People have regularly consumed horsetails. The fertile stems bearing strobili of some species can be cooked and eaten like asparagus[34] (a dish called tsukushi (土筆) in Japan[35][failed verification]). Indigenous nations across Cascadia consume and use horsetails in a variety of ways, with the Squamish calling them sx̱ém'x̱em and the Lushootseed using gʷəɫik, or horsetail roots, for cedar root baskets.[36][37][38] The young plants are eaten cooked or raw, but considerable care must be taken.[39]

If eaten over a long enough period of time, some species of horsetail can be poisonous to grazing animals, including horses.[40] The toxicity appears to be due to thiaminase, which can cause thiamin (vitamin B1) deficiency.[39][41][42][43]

Equisetum species may have been a common food for herbivorous dinosaurs. With studies showing that horsetails are nutritionally of high quality, it is assumed that horsetails were an important component of herbivorous dinosaur diets.[44] Analysis of the scratch marks on hadrosaur teeth is consistent with grazing on hard plants like horsetails.[45]

Folk medicine and safety concerns

edit

Extracts and other preparations of E. arvense have served as herbal remedies, with records dating over centuries.[39][41][46] In 2009, the European Food Safety Authority concluded there was no evidence for the supposed health effects of E. arvense, such as for invigoration, weight control, skincare, hair health or bone health.[47] As of 2018, there is insufficient scientific evidence for its effectiveness as a medicine to treat any human condition.[39][46][47]

E. arvense contains thiaminase, which metabolizes the B vitamin, thiamine, potentially causing thiamine deficiency and associated liver damage, if taken chronically.[39][41] Horsetail might produce a diuretic effect.[39][41] Further, its safety for oral consumption has not been sufficiently evaluated and it may be toxic, especially to children and pregnant women.[39]

See also

edit

References

edit
  1. ^ a b c d "Equisetum L." Plants of the World Online. Board of Trustees of the Royal Botanic Gardens, Kew. 2024. Retrieved 15 September 2024.
  2. ^ Dunmire, John R.; Williamson, Joseph F. (1995). "EQUISETUM hyemale". In Brenzel, Kathleen N. (ed.). Western Garden Book. Menlo Park, CA: Sunset. pp. 274, 606. ISBN 0376038500.
  3. ^ "An Introduction to the Genus Equisetum and the Class Sphenopsida as a whole". Florida International University. Archived from the original on 2009-07-14. Retrieved 2009-07-22.
  4. ^ Sacks, Oliver (25 July 2011). "Hunting Horsetails". The Talk of the Town: Field Trip. The New Yorker. No. 11 August 2011.
  5. ^ "Equisetum". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  6. ^ Daniel F. Austin (2004). Florida Ethnobotany (illustrated ed.). CRC Press. p. 283. ISBN 9780203491881.
  7. ^ Husby, C (2013). "Biology and functional ecology of Equisetum with emphasis on the giant horsetails". Botanical Review. 79 (2): 147–177. Bibcode:2013BotRv..79..147H. doi:10.1007/s12229-012-9113-4. S2CID 15414705.
  8. ^ Rutishauser, R (November 1999). "Polymerous leaf whorls in vascular plants: Developmental morphology and fuzziness of organ identities". International Journal of Plant Sciences. 160 (S6): S81–S103. doi:10.1086/314221. PMID 10572024. S2CID 4658142.
  9. ^ a b Streeter D, Hart-Davies C, Hardcastle A, Cole F, Harper L. 2009. Collins Flower Guide. Harper Collins ISBN 9-78-000718389-0
  10. ^ Stace, C. A. (2019). New Flora of the British Isles (Fourth ed.). Middlewood Green, Suffolk, U.K.: C & M Floristics. ISBN 978-1-5272-2630-2.
  11. ^ Gill, Victoria (11 September 2013). "Horsetail plant spores use 'legs' to walk and jump". BBC News.
  12. ^ Zhao, Q.; Gao, J.; Suo, J.; Chen, S.; Wang, T.; Dai, S. (2015). "Cytological and proteomic analyses of horsetail (Equisetum arvense L.) spore germination". Frontiers in Plant Science. 6: 441. doi:10.3389/fpls.2015.00441. PMC 4469821. PMID 26136760.
  13. ^ Fry, S. C.; Mohler, K. E.; Nesselrode, B. H. W. A.; Frankov, L. (2008). "Mixed-linkage -glucan:xyloglucan endotransglucosylase, a novel wall-remodelling enzyme from Equisetum (horsetails) and charophytic algae". The Plant Journal. 55 (2): 240–252. doi:10.1111/j.1365-313X.2008.03504.x. PMID 18397375.
  14. ^ Fry, Stephen C.; Nesselrode, Bertram H. W. A.; Miller, Janice G.; Mewburn, Ben R. (2008). "Mixed-linkage (1→3,1→4)-β-d-glucan is a major hemicellulose of Equisetum (horsetail) cell walls". New Phytologist. 179 (1): 104–15. doi:10.1111/j.1469-8137.2008.02435.x. PMID 18393951.
  15. ^ Sørensen, Iben; Pettolino, Filomena A.; Wilson, Sarah M.; Doblin, Monika S.; Johansen, Bo; Bacic, Antony; Willats, William G. T. (2008). "Mixed-linkage (1→3),(1→4)-β-d-glucan is not unique to the Poales and is an abundant component of Equisetum arvense cell walls". The Plant Journal. 54 (3): 510–21. doi:10.1111/j.1365-313X.2008.03453.x. PMID 18284587.
  16. ^ Simmons, Thomas J.; Fry, Stephen C. (2017). "Bonds broken & formed during the mixed-linkage glucan: xyloglucan endotransglucosylase reaction catalysed by Equisetum hetero-trans-β-glucanase". Biochemical Journal. 474 (7): 1055–1070. doi:10.1042/BCJ20160935. PMC 5341106. PMID 28108640. Retrieved 2019-07-17.
  17. ^ Pigott, Anthony (4 October 2001). "Summary of Equisetum Taxonomy". National Collection of Equisetum. Archived from the original on 21 October 2012. Retrieved 17 June 2013.
  18. ^ Trounce, Bob; Hanson, Cindy; Lloyd, Sandy; Iaconis, Linda; Thorp, John (2003). Horsetails - Equisetum species. Atlas of Living Australia, Centre for Invasive Species Solutions. ISBN 1-920932-24-0. Archived from the original (PDF) on 2021-08-26. Retrieved 2021-08-26. {{cite book}}: |website= ignored (help)
  19. ^ Elgorriaga, Andrés; Escapa, Ignacio H.; Bomfleur, Benjamin; Cúneo, Rubén; Ottone, Eduardo G. (February 2015). "Reconstruction and Phylogenetic Significance of a New Equisetum Linnaeus Species from the Lower Jurassic of Cerro Bayo (Chubut Province, Argentina)". Ameghiniana. 52 (1): 135–152. doi:10.5710/AMGH.15.09.2014.2758. hdl:11336/66623. ISSN 0002-7014. S2CID 6134534.
  20. ^ Gould, R. E. 1968. Morphology of Equisetum laterale Phillips, 1829, and E. bryanii sp. nov. from the Mesozoic of south‐eastern Queensland. Australian Journal of Botany 16: 153–176.
  21. ^ a b Elgorriaga, Andrés; Escapa, Ignacio H.; Rothwell, Gar W.; Tomescu, Alexandru M. F.; Rubén Cúneo, N. (August 2018). "Origin of Equisetum : Evolution of horsetails (Equisetales) within the major euphyllophyte clade Sphenopsida". American Journal of Botany. 105 (8): 1286–1303. doi:10.1002/ajb2.1125. PMID 30025163.
  22. ^ Channing, Alan; Zamuner, Alba; Edwards, Dianne; Guido, Diego (2011). "Equisetum thermale sp. nov. (Equisetales) from the Jurassic San Agustín hot spring deposit, Patagonia: Anatomy, paleoecology, and inferred paleoecophysiology". American Journal of Botany. 98 (4): 680–697. doi:10.3732/ajb.1000211. hdl:11336/95234. ISSN 1537-2197. PMID 21613167.
  23. ^ a b c d Christenhusz, Maarten J M; Bangiolo, Lois; Chase, Mark W; Fay, Michael F; Husby, Chad; Witkus, Marika; Viruel, Juan (April 2019). "Phylogenetics, classification and typification of extant horsetails (Equisetum, Equisetaceae)". Botanical Journal of the Linnean Society. 189 (4): 311–352. doi:10.1093/botlinnean/boz002.
  24. ^ Nitta, Joel H.; Schuettpelz, Eric; Ramírez-Barahona, Santiago; Iwasaki, Wataru; et al. (2022). "An Open and Continuously Updated Fern Tree of Life". Frontiers in Plant Science. 13: 909768. doi:10.3389/fpls.2022.909768. PMC 9449725. PMID 36092417.
  25. ^ "Tree viewer: interactive visualization of FTOL". FTOL v1.4.0 [GenBank release 253]. 2023. Retrieved 8 March 2023.
  26. ^ Fitter, Richard; Fitter, Alastair; Farrer, Anne (1984). Collins Guide to the Grasses, Sedges, Rushes and Ferns of Britain and Northern Europe. London: Collins. pp. 188–191. ISBN 0-00-219136-9.
  27. ^ Husby, Chad E. (2003). "How large are the giant horsetails?". The Giant Horsetails. Archived from the original on 11 April 2004. Retrieved 20 November 2008.
  28. ^ Altland, James (2003). "Horsetail - 'Equisetum arvense'". oregonstate.edu. Archived from the original on 2018-11-14. Retrieved 2019-07-17.
  29. ^ "Control Horse or Mare's Tail - Equisetum Arvense". Controlling Horsetail with Contact Herbicides. allotment-garden.org. 2016. Retrieved 2019-07-17.
  30. ^ Kress, Henriette (7 April 2005). "Getting rid of horsetail". Henriette's Herbal Homepage. Retrieved 19 May 2010.
  31. ^ William Thomas Parsons; Eric George Cuthbertson (2001). Noxious weeds of Australia. CSIRO Publishing. p. 14. ISBN 978-0-643-06514-7.
  32. ^ "Equisetum telmateia Ehrh. giant horsetail". USDA. Retrieved 2010-05-18.
  33. ^ "National Pest Plant Accord" (PDF). rnzih.org.nz. 2001. Retrieved 2019-07-17.
  34. ^ "Equisetum (PFAF Plant Database)". Plants For A Future.
  35. ^ Ashkenazi, Michael; Jacob, Jeanne (2003). Food culture in Japan. Westport, CT: Greenwood Press. ISBN 0-313-32438-7.
  36. ^ Turner, Nancy J. (2014). "Appendix 2B. Names of Native Plant Species in Indigenous Languages of Northwestern North America". Ancient Pathways, Ancestral Knowledge. Ethnobotany and Ecological Wisdom of Indigenous Peoples of Northwestern North America (PDF). McGill-Queen’s University Press. ISBN 978-0773543805.
  37. ^ Gunther, Erna (1973). Ethnobotany of western Washington: the knowledge and use of indigenous plants by Native Americans (Revised ed.). Seattle, WA: University of Washington Press. ISBN 9780295952581.
  38. ^ Hartford, Robin (25 March 2017). "Is Field Horsetail Edible?". Eatweeds.
  39. ^ a b c d e f g "Horsetail". Drugs.com. 11 June 2018. Retrieved 19 August 2018.
  40. ^ Israelsen, Clark E.; McKendrick, Scott S.; Bagley, Clell V. (2010). Poisonous Plants and Equine (Revised ed.). Logan, UT: Utah State University. p. 6.
  41. ^ a b c d "Horsetail". MedlinePlus, US National Library of Medicine, National Institutes of Health. 8 December 2017. Retrieved 14 November 2013.
  42. ^ Henderson JA, Evans EV, McIntosh RA (June 1952). "The antithiamine action of Equisetum". Journal of the American Veterinary Medical Association. 120 (903): 375–8. PMID 14927511.
  43. ^ Fabre, B; Geay, B.; Beaufils, P. (1993). "Thiaminase activity in Equisetum arvense and its extracts". Plant Med Phytother. 26: 190–7.
  44. ^ University of Bonn (12 February 2018). "How Did Huge Dinosaurs Find Enough Food? Did Bacteria Aid Their Digestion?". ScienceDaily.
  45. ^ Williams, Vincent S.; Barrett, Paul M. & Purnell, Mark A. (2009), "Quantitative analysis of dental microwear in hadrosaurid dinosaurs, and the implications for hypotheses of jaw mechanics and feeding", Proceedings of the National Academy of Sciences, 106 (27): 11194–11199, Bibcode:2009PNAS..10611194W, doi:10.1073/pnas.0812631106, PMC 2708679, PMID 19564603
  46. ^ a b Dragos, D; Gilca, M; Gaman, L; Vlad, A; Iosif, L; Stoian, I; Lupescu, O (2017). "Phytomedicine in Joint Disorders". Nutrients. 9 (1): 70. doi:10.3390/nu9010070. PMC 5295114. PMID 28275210.
  47. ^ a b "Scientific opinion on the substantiation of health claims related to Equisetum arvense L. and invigoration of the body (ID 2437), maintenance of skin (ID 2438), maintenance of hair (ID 2438), maintenance of bone (ID 2439), and maintenance or achievement of a normal body weight (ID 2783) pursuant to Article 13 of Regulation (EC) No 1924/2006". EFSA Journal. 7 (10). European Food Safety Authority: 1289. 2009. doi:10.2903/j.efsa.2009.1289.

Further reading

edit
edit