In nuclear physics, hyperdeformation is theoretically predicted states of an atomic nucleus with an extremely elongated shape and a very high angular momentum. Less elongated states, superdeformation, have been well observed, but the experimental evidence for hyperdeformation is more limited. Hyperdeformed states correspond to an axis ratio of 3:1. They would be caused by a third minimum in the potential energy surface, the second causing superdeformation and the first minimum being normal deformation.[1][2][3] Hyperdeformation is predicted to be found in 107Cd.
References
edit- ^ Adamian, G. G.; N. V. Antonenko; Z. Gagyi-Palffy; S.P. Ivanova; R. V. Jolos; Yu. V. Palchikov; W. Scheid; T.M. Shneidman; A.S. Zubov (2007). "Nuclear Molecular Structure". Collective Motion and Phase Transitions in Nuclear Systems: Proceedings of the Predeal International Summer School in Nuclear Physics (illustrated ed.). World Scientific. p. 483. ISBN 978-981-270-083-4.
- ^ Schunck, N.; Dudek, J.; Herskind, B. (May 2007). "Nuclear hyperdeformation and the Jacobi shape transition". Physical Review C. 75 (5): id. 054304. Bibcode:2007PhRvC..75e4304S. doi:10.1103/PhysRevC.75.054304.
- ^ Abusara, H.; Afanasjev, A. V. (2009). "Hyperdeformation in the Cd isotopes: A microscopic analysis". Physical Review C. 79 (2). American Physical Society: eid 024317. arXiv:0902.0095. Bibcode:2009PhRvC..79b4317A. doi:10.1103/PhysRevC.79.024317. S2CID 119268176. arXiv: 0902.0095v1