Truncated infinite-order triangular tiling

(Redirected from I33 symmetry)
Infinite-order truncated triangular tiling
Truncated infinite-order triangular tiling
Poincaré disk model of the hyperbolic plane
Type Hyperbolic uniform tiling
Vertex configuration ∞.6.6
Schläfli symbol t{3,∞}
Wythoff symbol 2 ∞ | 3
Coxeter diagram
Symmetry group [∞,3], (*∞32)
Dual apeirokis apeirogonal tiling
Properties Vertex-transitive

In geometry, the truncated infinite-order triangular tiling is a uniform tiling of the hyperbolic plane with a Schläfli symbol of t{3,∞}.

Symmetry

edit
 
Truncated infinite-order triangular tiling with mirror lines,     .

The dual of this tiling represents the fundamental domains of *∞33 symmetry. There are no mirror removal subgroups of [(∞,3,3)], but this symmetry group can be doubled to ∞32 symmetry by adding a mirror.

Small index subgroups of [(∞,3,3)], (*∞33)
Type Reflectional Rotational
Index 1 2
Diagram    
Coxeter
(orbifold)
[(∞,3,3)]
    
(*∞33)
[(∞,3,3)]+
    
(∞33)
edit

This hyperbolic tiling is topologically related as a part of sequence of uniform truncated polyhedra with vertex configurations (6.n.n), and [n,3] Coxeter group symmetry.

*n32 symmetry mutation of truncated tilings: n.6.6
Sym.
*n42
[n,3]
Spherical Euclid. Compact Parac. Noncompact hyperbolic
*232
[2,3]
*332
[3,3]
*432
[4,3]
*532
[5,3]
*632
[6,3]
*732
[7,3]
*832
[8,3]...
*∞32
[∞,3]
[12i,3] [9i,3] [6i,3]
Truncated
figures
                     
Config. 2.6.6 3.6.6 4.6.6 5.6.6 6.6.6 7.6.6 8.6.6 ∞.6.6 12i.6.6 9i.6.6 6i.6.6
n-kis
figures
               
Config. V2.6.6 V3.6.6 V4.6.6 V5.6.6 V6.6.6 V7.6.6 V8.6.6 V∞.6.6 V12i.6.6 V9i.6.6 V6i.6.6
Paracompact uniform tilings in [∞,3] family
Symmetry: [∞,3], (*∞32) [∞,3]+
(∞32)
[1+,∞,3]
(*∞33)
[∞,3+]
(3*∞)
                                                                 
     
=     
     
=     
     
=     
            =
     or     
      =
     or     
     
=     
                   
{∞,3} t{∞,3} r{∞,3} t{3,∞} {3,∞} rr{∞,3} tr{∞,3} sr{∞,3} h{∞,3} h2{∞,3} s{3,∞}
Uniform duals
                                                           
                 
V∞3 V3.∞.∞ V(3.∞)2 V6.6.∞ V3 V4.3.4.∞ V4.6.∞ V3.3.3.3.∞ V(3.∞)3 V3.3.3.3.3.∞
Paracompact hyperbolic uniform tilings in [(∞,3,3)] family
Symmetry: [(∞,3,3)], (*∞33) [(∞,3,3)]+, (∞33)
                                       
                                               
               
(∞,∞,3) t0,1(∞,3,3) t1(∞,3,3) t1,2(∞,3,3) t2(∞,3,3) t0,2(∞,3,3) t0,1,2(∞,3,3) s(∞,3,3)
Dual tilings
                                                               
                                               
   
V(3.∞)3 V3.∞.3.∞ V(3.∞)3 V3.6.∞.6 V(3.3) V3.6.∞.6 V6.6.∞ V3.3.3.3.3.∞

See also

edit

References

edit
  • John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things 2008, ISBN 978-1-56881-220-5 (Chapter 19, The Hyperbolic Archimedean Tessellations)
  • "Chapter 10: Regular honeycombs in hyperbolic space". The Beauty of Geometry: Twelve Essays. Dover Publications. 1999. ISBN 0-486-40919-8. LCCN 99035678.
edit