Imre Z. Ruzsa

(Redirected from Imre Ruzsa)

Imre Z. Ruzsa (born 23 July 1953) is a Hungarian mathematician specializing in number theory.

Imre Z. Ruzsa
Born (1953-07-23) 23 July 1953 (age 71)
Nationality Hungarian
Alma materEötvös Loránd University
Scientific career
FieldsMathematics

Life

edit
He graduated from the Eötvös Loránd University in 1976. Since then he has been at the Alfréd Rényi Institute of Mathematics of the Hungarian Academy of Sciences. He was awarded the Rollo Davidson Prize in 1988. He was elected corresponding member (1998) and member (2004) of the Hungarian Academy of Sciences. He was invited speaker at the European Congress of Mathematics at Stockholm, 2004, and in the Combinatorics section of the International Congress of Mathematicians in Madrid, 2006. In 2012 he became a fellow of the American Mathematical Society.[1]

Work

edit

With Endre Szemerédi he proved subquadratic upper and lower bounds for the Ruzsa–Szemerédi problem on the number of triples of points in which the union of any three triples contains at least seven points. He proved that an essential component has at least (log x)1+ε elements up to x, for some ε > 0. On the other hand, for every ε > 0 there is an essential component that has at most (log x)1+ε elements up to x, for every x. He gave a new proof to Freiman's theorem. Ruzsa also showed the existence of a Sidon sequence which has at least x0.41 elements up to x.

In a result complementing the Erdős–Fuchs theorem he showed that there exists a sequence a0a1, ... of natural numbers such that for every n the number of solutions of the inequality ai + aj ≤ n is cn + O(n1/4log n) for some c > 0.

Selected publications

edit
  • Ruzsa, I. Z.; Szemerédi, E. (1978). "Triple systems with no six points carrying three triangles". Colloq. Math. Soc. János Bolyai. 18. North-Holland, Amsterdam-New York: 939–945.
  • Ruzsa, I. Z. (1987). "Essential components". Proceedings of the London Mathematical Society. 54: 38–56. doi:10.1112/plms/s3-54.1.38.
  • Ruzsa, I. Z. (1994). "Generalized arithmetical progressions and sumsets". Acta Mathematica Hungarica. 65 (4): 379–388. doi:10.1007/BF01876039. S2CID 121469006.
  • Ruzsa, Imre Z. (1997). "The Brunn-Minkowski inequality and nonconvex sets". Geometriae Dedicata. 67 (3): 337–348. doi:10.1023/A:1004958110076. MR 1475877. S2CID 117749981.

See also

edit

References

edit
edit