Hyperlocomotion, also known as locomotor hyperactivity, hyperactivity, or increased locomotor activity, is an effect of certain drugs in animals in which locomotor activity is increased.[1] More specifically, it is an effect induced by dopamine releasing agents and psychostimulants like amphetamine and methamphetamine and by NMDA receptor antagonists and dissociative hallucinogens like dizocilpine (MK-801) and phencyclidine (PCP).[1][2][3][4] Stimulation of locomotor activity is thought to be mediated by increased signaling in the nucleus accumbens.[5][6]

Drug-induced hyperlocomotion can be reversed by various drugs, such as antipsychotics acting as dopamine D2 receptor antagonists.[1][3] Reversal of drug-induced hyperlocomotion has been used as an animal test of drug antipsychotic-like activity.[1][3] Amphetamines and NMDA receptor antagonists likewise induce stereotypies, and reversal of these stereotypies is also employed as a test of drug antipsychotic-like activity.[1][3]

Certain antidepressants, including the dopamine reuptake inhibitors amineptine, bupropion, and nomifensine, also increase spontaneous locomotor activity in animals.[7][8] Conversely, most other antidepressants do not do so, and instead often actually show behavioral sedation in this test.[7][5][9] The dopamine reuptake inhibitor cocaine increases locomotor activity similarly to amphetamines.[4] Atypical dopamine reuptake inhibitors like modafinil do not produce hyperlocomotion in animals.[4] Direct dopamine receptor agonists like apomorphine show biphasic effects, decreasing locomotor activity at low doses and increasing locomotor activity at high doses.[5]

Other similar effects include stereotypy, exploratory behavior, climbing behavior, and jumping behavior.[10][2][3] Amphetamines induce stereotypies in addition to hyperlocomotion.[2][3] Apomorphine induces stereotypy and climbing behavior.[2] The dopamine precursor levodopa (L-DOPA) induces jumping behavior.[2] These effects can all be reversed by antipsychotics.[2]

See also

edit

References

edit
  1. ^ a b c d e Castagné, Vincent; Moser, Paul C.; Porsolt, Roger D. (2009). "Preclinical Behavioral Models for Predicting Antipsychotic Activity". Advances in Pharmacology. Elsevier. p. 381–418. doi:10.1016/s1054-3589(08)57010-4. ISSN 1054-3589.
  2. ^ a b c d e f Ayyar P, Ravinder JR (June 2023). "Animal models for the evaluation of antipsychotic agents". Fundam Clin Pharmacol. 37 (3): 447–460. doi:10.1111/fcp.12855. PMID 36410728.
  3. ^ a b c d e f Yee BK, Singer P (October 2013). "A conceptual and practical guide to the behavioural evaluation of animal models of the symptomatology and therapy of schizophrenia". Cell Tissue Res. 354 (1): 221–246. doi:10.1007/s00441-013-1611-0. PMC 3791321. PMID 23579553.
  4. ^ a b c Nishino, Seiji; Kotorii, Nozomu (2016). "Modes of Action of Drugs Related to Narcolepsy: Pharmacology of Wake-Promoting Compounds and Anticataplectics". Narcolepsy. Cham: Springer International Publishing. p. 307–329. doi:10.1007/978-3-319-23739-8_22. ISBN 978-3-319-23738-1.
  5. ^ a b c D'Aquila PS, Collu M, Gessa GL, Serra G (September 2000). "The role of dopamine in the mechanism of action of antidepressant drugs". Eur J Pharmacol. 405 (1–3): 365–373. doi:10.1016/s0014-2999(00)00566-5. PMID 11033341.
  6. ^ Ikemoto S, Panksepp J (December 1999). "The role of nucleus accumbens dopamine in motivated behavior: a unifying interpretation with special reference to reward-seeking". Brain Res Brain Res Rev. 31 (1): 6–41. doi:10.1016/s0165-0173(99)00023-5. PMID 10611493.
  7. ^ a b Tucker JC, File SE (1986). "The effects of tricyclic and 'atypical' antidepressants on spontaneous locomotor activity in rodents". Neurosci Biobehav Rev. 10 (2): 115–121. doi:10.1016/0149-7634(86)90022-9. PMID 3737024.
  8. ^ Rampello, Liborio; Nicoletti, Ferdinando; Nicoletti, Francesco (2000). "Dopamine and Depression". CNS Drugs. 13 (1). Springer Science and Business Media LLC: 35–45. doi:10.2165/00023210-200013010-00004. ISSN 1172-7047.
  9. ^ File SE, Tucker JC (1986). "Behavioral consequences of antidepressant treatment in rodents". Neurosci Biobehav Rev. 10 (2): 123–134. doi:10.1016/0149-7634(86)90023-0. PMID 3526203.
  10. ^ McCarson KE (2020). "Strategies for Behaviorally Phenotyping the Transgenic Mouse". Methods Mol Biol. 2066: 171–194. doi:10.1007/978-1-4939-9837-1_15. PMID 31512217.