Isidore Isaac Hirschman Jr. (1922–1990) was an American mathematician, and professor at Washington University in St. Louis working on analysis.
Isidore Isaac Hirschman | |
---|---|
Born | November 22, 1922 |
Died | June 10, 1990 | (aged 67)
Nationality | American |
Alma mater | Harvard |
Scientific career | |
Fields | Harmonic analysis Operator theory |
Institutions | Washington University |
Thesis | Some Representation and Inversion Problems for the Laplace Transform (1947) |
Doctoral advisor | David Widder |
Life
editHirschman earned his Ph.D. in 1947 from Harvard under David Widder. After writing ten papers together, Hirschman and Widder published a book entitled The Convolution Transform.[1] Hirschman spent most of his career (1949–1978) at Washington University, publishing mainly in harmonic analysis and operator theory. Washington University holds a lecture series given by Hirschman, with one lecture given by Richard Askey.[1] While Askey was at Washington University, Hirschman asked him to solve an ultraspherical polynomial problem. Askey says in this lecture, "This led to a joint paper, and was what started my interest in special functions."[2]
Research
editHirschman's PhD was entitled “Some Representation and Inversion Problems for the Laplace Transform,” He mainly published papers in harmonic analysis and operator theory. In 1959 Hirschman wrote a paper with Askey, Weighted quadratic norms and ultraspherical polynomials, published in the Transactions of the American Mathematical Society.[2] This was one of the two articles Hirschman and Askey co-wrote to complete Hirschman's 1955 research program.[2]
In 1964 Hirschman published Extreme eigenvalues of Toeplitz forms associated with Jacobi polynomials, showing that for banded Toeplitz matrices, eigenvalues accumulate on a spatial curve, in the complex plane with the normalized eigenvalue counting measure converging weakly to a measure on this curve as .[3]
Selected publications
editArticles
edit- ——; Widder, D. V. (1949). "The inversion of a general class of convolution transforms". Transactions of the American Mathematical Society. 66: 135–201. doi:10.1090/S0002-9947-1949-0032817-4.
- ——; Widder, D. V. (1949). "A representation theory for a general class of convolution transforms". Transactions of the American Mathematical Society. 67: 69–97. doi:10.1090/S0002-9947-1949-0032818-6.
- ——; Jenkins, J. A. (1950). "Note on a result of Levine and Lifschitz". Proceedings of the American Mathematical Society. 1 (3): 390–393. doi:10.1090/S0002-9939-1950-0036346-7.
- —— (1950). "Proof of a conjecture of I. J. Schoenberg". Proceedings of the American Mathematical Society. 1: 63–65. doi:10.1090/S0002-9939-1950-0032705-7.
- ——; Jenkins, J. A. (1950). "On lacunary Dirichlet series". Proceedings of the American Mathematical Society. 1 (4): 512–517. doi:10.1090/S0002-9939-1950-0036836-7.
- —— (1950). "On the Behaviour of Fourier Transforms at Infinity and on Quasi-Analytic Classes of Functions". American Journal of Mathematics. 72 (1): 200–213. doi:10.2307/2372147. JSTOR 2372147.
- ——; Widder, D. V. (1951). "On the products of functions represented as convolution transforms". Proceedings of the American Mathematical Society. 2: 97–99. doi:10.1090/S0002-9939-1951-0041967-2.
- —— (1952). "A convexity theorem for certain groups of transformations". Journal d'Analyse Mathématique. 2 (2): 209–218. doi:10.1007/BF02825637.
- —— (1957). "Projections associated with Jacobi polynomials". Proceedings of the American Mathematical Society. 8 (2): 286–290. doi:10.1090/S0002-9939-1957-0085359-4.
- Devinatz, A.; —— (1958). "The Spectra of Multiplier Transforms on ". American Journal of Mathematics. 80 (4): 829–842. doi:10.2307/2372836. ISSN 0002-9327. JSTOR 2372836.
- Askey, Richard; —— (1959). "Weighted quadratic norms and ultraspherical polynomials. I". Transactions of the American Mathematical Society. 91 (2): 294–313. doi:10.1090/S0002-9947-1959-0107772-5.
- —— (1959). "Weighted quadratic norms and ultraspherical polynomials. II". Transactions of the American Mathematical Society. 91 (2): 314–329. doi:10.1090/S0002-9947-1959-0107773-7.
- —— (1959). "On multiplier transformations". Duke Mathematical Journal. 26 (2): 221–242. doi:10.1215/S0012-7094-59-02623-7.
- —— (1960). "Variation diminishing Hankel transforms". Journal d'Analyse Mathématique. 8: 307–336. doi:10.1007/BF02786854. hdl:2027/mdp.39015095257633. S2CID 120347146.
- —— (1960). "Hankel transforms and variation diminishing Kernels". Bulletin of the American Mathematical Society. 66: 40–43. doi:10.1090/S0002-9904-1960-10383-7.
- —— (1962). "Multiplier transformations. III". Proceedings of the American Mathematical Society. 13 (6): 851–857. doi:10.1090/S0002-9939-1962-0143014-8.}
- Askey, Richard; —— (1963). "Mean Summability for Ultraspherical Polynomials". Mathematica Scandinavica. 12 (2): 167–177. doi:10.7146/math.scand.a-10680. JSTOR 24489384?.
- —— (1964). "Finite section Wiener-Hopf equations on a compact group with ordered dual". Bulletin of the American Mathematical Society. 70 (4): 508–511. doi:10.1090/S0002-9904-1964-11174-5.
- Baxter, Glen; —— (1964). "An explicit inversion formula for finite-section Wiener-Hopf operators". Bulletin of the American Mathematical Society. 70 (6): 820–824. doi:10.1090/S0002-9904-1964-11248-9.
- —— (1966). "Szegö functions on a locally compact Abelian group with ordered dual". Transactions of the American Mathematical Society. 121: 133–159. doi:10.1090/S0002-9947-1966-0190630-1.
- —— (1966). "Errata to Szegö functions on a locally compact Abelian group with ordered dual". Transactions of the American Mathematical Society. 123 (2): 548. doi:10.1090/S0002-9947-66-99990-9.
- ——; Liang, D. S.; Wilson, E. N. (1982). "Szegő limit theorems for Toeplitz operators on compact homogeneous spaces". Transactions of the American Mathematical Society. 270 (2): 351–376. doi:10.1090/S0002-9947-1982-0645321-6.
Books
edit- Hirschman, I. (1962). Infinite Series. New York: Holt, Rinehart & Winston.[4] – A textbook for advanced undergraduate and graduate mathematics.[5]
- Hirschman, Isidore Isaac; Widder, David Vernon (1955). The Convolution Transform. New York: Princeton University Press;[6] now available from Dover Publications.[7]
- Hirschman, I. I., ed. (1965). Studies in Real and Complex Analysis. Mathematical Association of America. ISBN 978-0-88385-103-6.
References
edit- ^ a b "Who's That Mathematician? Paul R. Halmos Collection – Page 23 | Mathematical Association of America". www.maa.org. Retrieved 2016-08-29.
- ^ a b c "Askey biography". www-groups.dcs.st-andrews.ac.uk. Archived from the original on 2016-09-11. Retrieved 2016-08-29.
- ^ Hirschman, I. I. (1964-01-01). "Extreme eigen values of Toeplitz forms associated with Jacobi polynomials". Pacific Journal of Mathematics. 14 (1): 107–161. doi:10.2140/pjm.1964.14.107. ISSN 0030-8730.
- ^ Hirschman, Isidore (2014-11-28). Infinite Series (Reprint ed.). Dover Publications Inc. ISBN 9780486789750.
- ^ Stenger, Allen (March 28, 2015). "Review of Infinite Series by Isidore Isaac Hirschman". MAA Reviews, Mathematical Association of America.
- ^ Blackman, Jerome (1957). "Book Review: The convolution transform". Bulletin of the American Mathematical Society. 63 (3): 205–208. doi:10.1090/S0002-9904-1957-10106-2. ISSN 0002-9904.
- ^ Hirschman, Isidore Isaac; Widder, David Vernon (2012-05-04). The Convolution Transform. Courier Corporation. ISBN 9780486154565.
- Isidore Isaac Hirschman Jr. at the Mathematics Genealogy Project
- http://mathdl.maa.org/mathDL/46/?pa=content&sa=viewDocument&nodeId=3801&bodyId=4189