In optics, jitter is used to refer to motion that has high temporal frequency relative to the integration/exposure time. This may result from vibration in an assembly or from the unstable hand of a photographer. Jitter is typically differentiated from smear, which has a lower frequency relative to the integration time.[1] Whereas smear refers to a relatively constant rate during the integration/exposure time, jitter refers to a relatively sinusoidal motion during the integration/exposure time.
The equation for the optical Modulation transfer function associated with jitter is
where k is the spatial frequency and is the amplitude of the jitter.[2] Note that this frequency is in radians of phase per cycle. The equivalent expression in Hz is
where u is the spatial frequency and is again the amplitude of the jitter (note that as the jitter approaches infinity, the value of the function tends towards zero).
For spacecraft, operation in a vacuum often means low mechanical damping. Meanwhile, spacecraft are compact and rigid, to withstand high launch loads. Jitter, then, is transmitted easily and often a limiting factor for high-resolution optics.
References
edit- ^ Encyclopedia of optical engineering, p. 2380, at Google Books
- ^ Johnson, Jerris F. (10 November 1993). "Modeling imager deterministic and statistical modulation transfer functions". Applied Optics. 32 (32): 6503–13. Bibcode:1993ApOpt..32.6503J. doi:10.1364/AO.32.006503. PMID 20856491.