Historical motivation
edit
The Kodaira–Spencer map was originally constructed in the setting of complex manifolds. Given a complex analytic manifold
M
{\displaystyle M}
with charts
U
i
{\displaystyle U_{i}}
and biholomorphic maps
f
j
k
{\displaystyle f_{jk}}
sending
z
k
→
z
j
=
(
z
j
1
,
…
,
z
j
n
)
{\displaystyle z_{k}\to z_{j}=(z_{j}^{1},\ldots ,z_{j}^{n})}
gluing the charts together, the idea of deformation theory is to replace these transition maps
f
j
k
(
z
k
)
{\displaystyle f_{jk}(z_{k})}
by parametrized transition maps
f
j
k
(
z
k
,
t
1
,
…
,
t
k
)
{\displaystyle f_{jk}(z_{k},t_{1},\ldots ,t_{k})}
over some base
B
{\displaystyle B}
(which could be a real manifold) with coordinates
t
1
,
…
,
t
k
{\displaystyle t_{1},\ldots ,t_{k}}
, such that
f
j
k
(
z
k
,
0
,
…
,
0
)
=
f
j
k
(
z
k
)
{\displaystyle f_{jk}(z_{k},0,\ldots ,0)=f_{jk}(z_{k})}
. This means the parameters
t
i
{\displaystyle t_{i}}
deform the complex structure of the original complex manifold
M
{\displaystyle M}
. Then, these functions must also satisfy a cocycle condition, which gives a 1-cocycle on
M
{\displaystyle M}
with values in its tangent bundle. Since the base can be assumed to be a polydisk, this process gives a map between the tangent space of the base to
H
1
(
M
,
T
M
)
{\displaystyle H^{1}(M,T_{M})}
called the Kodaira–Spencer map.[ 1]
More formally, the Kodaira–Spencer map is[ 2]
K
S
:
T
0
B
→
H
1
(
M
,
T
M
)
{\displaystyle KS:T_{0}B\to H^{1}(M,T_{M})}
where
M
→
B
{\displaystyle {\mathcal {M}}\to B}
is a smooth proper map between complex spaces [ 3] (i.e., a deformation of the special fiber
M
=
M
0
{\displaystyle M={\mathcal {M}}_{0}}
.)
K
S
{\displaystyle KS}
is the connecting homomorphism obtained by taking a long exact cohomology sequence of the surjection
T
M
|
M
→
T
0
B
⊗
O
M
{\displaystyle T{\mathcal {M}}|_{M}\to T_{0}B\otimes {\mathcal {O}}_{M}}
whose kernel is the tangent bundle
T
M
{\displaystyle T_{M}}
.
If
v
{\displaystyle v}
is in
T
0
B
{\displaystyle T_{0}B}
, then its image
K
S
(
v
)
{\displaystyle KS(v)}
is called the Kodaira–Spencer class of
v
{\displaystyle v}
.
Because deformation theory has been extended to multiple other contexts, such as deformations in scheme theory, or ringed topoi , there are constructions of the Kodaira–Spencer map for these contexts.
In the scheme theory over a base field
k
{\displaystyle k}
of characteristic
0
{\displaystyle 0}
, there is a natural bijection between isomorphisms classes of
X
→
S
=
Spec
(
k
[
t
]
/
t
2
)
{\displaystyle {\mathcal {X}}\to S=\operatorname {Spec} (k[t]/t^{2})}
and
H
1
(
X
,
T
X
)
{\displaystyle H^{1}(X,TX)}
.
Using infinitesimals
edit
Over characteristic
0
{\displaystyle 0}
the construction of the Kodaira–Spencer map[ 4] can be done using an infinitesimal interpretation of the cocycle condition. If we have a complex manifold
X
{\displaystyle X}
covered by finitely many charts
U
=
{
U
α
}
α
∈
I
{\displaystyle {\mathcal {U}}=\{U_{\alpha }\}_{\alpha \in I}}
with coordinates
z
α
=
(
z
α
1
,
…
,
z
α
n
)
{\displaystyle z_{\alpha }=(z_{\alpha }^{1},\ldots ,z_{\alpha }^{n})}
and transition functions
f
β
α
:
U
β
|
U
α
β
→
U
α
|
U
α
β
{\displaystyle f_{\beta \alpha }:U_{\beta }|_{U_{\alpha \beta }}\to U_{\alpha }|_{U_{\alpha \beta }}}
where
f
α
β
(
z
β
)
=
z
α
{\displaystyle f_{\alpha \beta }(z_{\beta })=z_{\alpha }}
Recall that a deformation is given by a commutative diagram
X
→
X
↓
↓
Spec
(
C
)
→
Spec
(
C
[
ε
]
)
{\displaystyle {\begin{matrix}X&\to &{\mathfrak {X}}\\\downarrow &&\downarrow \\{\text{Spec}}(\mathbb {C} )&\to &{\text{Spec}}(\mathbb {C} [\varepsilon ])\end{matrix}}}
where
C
[
ε
]
{\displaystyle \mathbb {C} [\varepsilon ]}
is the ring of dual numbers and the vertical maps are flat, the deformation has the cohomological interpretation as cocycles
f
~
α
β
(
z
β
,
ε
)
{\displaystyle {\tilde {f}}_{\alpha \beta }(z_{\beta },\varepsilon )}
on
U
α
×
Spec
(
C
[
ε
]
)
{\displaystyle U_{\alpha }\times {\text{Spec}}(\mathbb {C} [\varepsilon ])}
where
z
α
=
f
~
α
β
(
z
β
,
ε
)
=
f
α
β
(
z
β
)
+
ε
b
α
β
(
z
β
)
{\displaystyle z_{\alpha }={\tilde {f}}_{\alpha \beta }(z_{\beta },\varepsilon )=f_{\alpha \beta }(z_{\beta })+\varepsilon b_{\alpha \beta }(z_{\beta })}
If the
f
~
α
β
{\displaystyle {\tilde {f}}_{\alpha \beta }}
satisfy the cocycle condition, then they glue to the deformation
X
{\displaystyle {\mathfrak {X}}}
. This can be read as
f
~
α
γ
(
z
γ
,
ε
)
=
f
~
α
β
(
f
~
β
γ
(
z
γ
,
ε
)
,
ε
)
=
f
α
β
(
f
β
γ
(
z
γ
)
+
ε
b
β
γ
(
z
γ
)
)
+
ε
b
α
β
(
f
β
γ
(
z
γ
)
+
ε
b
β
γ
(
z
γ
)
)
{\displaystyle {\begin{aligned}{\tilde {f}}_{\alpha \gamma }(z_{\gamma },\varepsilon )={}&{\tilde {f}}_{\alpha \beta }({\tilde {f}}_{\beta \gamma }(z_{\gamma },\varepsilon ),\varepsilon )\\={}&f_{\alpha \beta }(f_{\beta \gamma }(z_{\gamma })+\varepsilon b_{\beta \gamma }(z_{\gamma }))\\&+\varepsilon b_{\alpha \beta }(f_{\beta \gamma }(z_{\gamma })+\varepsilon b_{\beta \gamma }(z_{\gamma }))\end{aligned}}}
Using the properties of the dual numbers, namely
g
(
a
+
b
ε
)
=
g
(
a
)
+
ε
g
′
(
a
)
b
{\displaystyle g(a+b\varepsilon )=g(a)+\varepsilon g'(a)b}
, we have
f
α
β
(
f
β
γ
(
z
γ
)
+
ε
b
β
γ
(
z
γ
)
)
=
f
α
β
(
f
β
γ
(
z
γ
)
)
+
ε
∂
f
α
β
∂
z
β
(
z
β
)
b
β
γ
(
z
γ
)
{\displaystyle {\begin{aligned}f_{\alpha \beta }(f_{\beta \gamma }(z_{\gamma })+\varepsilon b_{\beta \gamma }(z_{\gamma }))&=f_{\alpha \beta }(f_{\beta \gamma }(z_{\gamma }))+\varepsilon {\frac {\partial f_{\alpha \beta }}{\partial z_{\beta }}}(z_{\beta })b_{\beta \gamma }(z_{\gamma })\\\end{aligned}}}
and
ε
b
α
β
(
f
β
γ
(
z
γ
)
+
ε
b
β
γ
(
z
γ
)
)
=
ε
b
α
β
(
z
β
)
{\displaystyle {\begin{aligned}\varepsilon b_{\alpha \beta }(f_{\beta \gamma }(z_{\gamma })+\varepsilon b_{\beta \gamma }(z_{\gamma }))=\varepsilon b_{\alpha \beta }(z_{\beta })\end{aligned}}}
hence the cocycle condition on
U
α
×
Spec
(
C
[
ε
]
)
{\displaystyle U_{\alpha }\times {\text{Spec}}(\mathbb {C} [\varepsilon ])}
is the following two rules
b
α
γ
=
∂
f
α
β
∂
z
β
b
β
γ
+
b
α
β
{\displaystyle b_{\alpha \gamma }={\frac {\partial f_{\alpha \beta }}{\partial z_{\beta }}}b_{\beta \gamma }+b_{\alpha \beta }}
f
α
γ
=
f
α
β
∘
f
β
γ
{\displaystyle f_{\alpha \gamma }=f_{\alpha \beta }\circ f_{\beta \gamma }}
Conversion to cocycles of vector fields
edit
The cocycle of the deformation can easily be converted to a cocycle of vector fields
θ
=
{
θ
α
β
}
∈
C
1
(
U
,
T
X
)
{\displaystyle \theta =\{\theta _{\alpha \beta }\}\in C^{1}({\mathcal {U}},T_{X})}
as follows: given the cocycle
f
~
α
β
=
f
α
β
+
ε
b
α
β
{\displaystyle {\tilde {f}}_{\alpha \beta }=f_{\alpha \beta }+\varepsilon b_{\alpha \beta }}
we can form the vector field
θ
α
β
=
∑
i
=
1
n
b
α
β
i
∂
∂
z
α
i
{\displaystyle \theta _{\alpha \beta }=\sum _{i=1}^{n}b_{\alpha \beta }^{i}{\frac {\partial }{\partial z_{\alpha }^{i}}}}
which is a 1-cochain. Then the rule for the transition maps of
b
α
γ
{\displaystyle b_{\alpha \gamma }}
gives this 1-cochain as a 1-cocycle, hence a class
[
θ
]
∈
H
1
(
X
,
T
X
)
{\displaystyle [\theta ]\in H^{1}(X,T_{X})}
.
One of the original constructions of this map used vector fields in the settings of differential geometry and complex analysis.[ 1] Given the notation above, the transition from a deformation to the cocycle condition is transparent over a small base of dimension one, so there is only one parameter
t
{\displaystyle t}
. Then, the cocycle condition can be read as
f
i
k
α
(
z
k
,
t
)
=
f
i
j
α
(
f
k
j
1
(
z
k
,
t
)
,
…
,
f
k
j
n
(
z
k
,
t
)
,
t
)
{\displaystyle f_{ik}^{\alpha }(z_{k},t)=f_{ij}^{\alpha }(f_{kj}^{1}(z_{k},t),\ldots ,f_{kj}^{n}(z_{k},t),t)}
Then, the derivative of
f
i
k
α
(
z
k
,
t
)
{\displaystyle f_{ik}^{\alpha }(z_{k},t)}
with respect to
t
{\displaystyle t}
can be calculated from the previous equation as
∂
f
i
k
α
(
z
k
,
t
)
∂
t
=
∂
f
i
j
α
(
z
j
,
t
)
∂
t
+
∑
β
=
0
n
∂
f
i
j
α
(
z
j
,
t
)
∂
f
j
k
β
(
z
k
,
t
)
⋅
∂
f
j
k
β
(
z
k
,
t
)
∂
t
{\displaystyle {\begin{aligned}{\frac {\partial f_{ik}^{\alpha }(z_{k},t)}{\partial t}}&={\frac {\partial f_{ij}^{\alpha }(z_{j},t)}{\partial t}}+\sum _{\beta =0}^{n}{\frac {\partial f_{ij}^{\alpha }(z_{j},t)}{\partial f_{jk}^{\beta }(z_{k},t)}}\cdot {\frac {\partial f_{jk}^{\beta }(z_{k},t)}{\partial t}}\\\end{aligned}}}
Note because
z
j
β
=
f
j
k
β
(
z
k
,
t
)
{\displaystyle z_{j}^{\beta }=f_{jk}^{\beta }(z_{k},t)}
and
z
i
α
=
f
i
j
α
(
z
j
,
t
)
{\displaystyle z_{i}^{\alpha }=f_{ij}^{\alpha }(z_{j},t)}
, then the derivative reads as
∂
f
i
k
α
(
z
k
,
t
)
∂
t
=
∂
f
i
j
α
(
z
j
,
t
)
∂
t
+
∑
β
=
0
n
∂
z
i
α
∂
z
j
β
⋅
∂
f
j
k
β
(
z
k
,
t
)
∂
t
{\displaystyle {\begin{aligned}{\frac {\partial f_{ik}^{\alpha }(z_{k},t)}{\partial t}}&={\frac {\partial f_{ij}^{\alpha }(z_{j},t)}{\partial t}}+\sum _{\beta =0}^{n}{\frac {\partial z_{i}^{\alpha }}{\partial z_{j}^{\beta }}}\cdot {\frac {\partial f_{jk}^{\beta }(z_{k},t)}{\partial t}}\\\end{aligned}}}
With a change of coordinates of the part of the previous holomorphic vector field having these partial derivatives as the coefficients, we can write
∂
∂
z
j
β
=
∑
α
=
1
n
∂
z
i
α
∂
z
j
β
⋅
∂
∂
z
i
α
{\displaystyle {\frac {\partial }{\partial z_{j}^{\beta }}}=\sum _{\alpha =1}^{n}{\frac {\partial z_{i}^{\alpha }}{\partial z_{j}^{\beta }}}\cdot {\frac {\partial }{\partial z_{i}^{\alpha }}}}
Hence we can write up the equation above as the following equation of vector fields
∑
α
=
0
n
∂
f
i
k
α
(
z
k
,
t
)
∂
t
∂
∂
z
i
α
=
∑
α
=
0
n
∂
f
i
j
α
(
z
j
,
t
)
∂
t
∂
∂
z
i
α
+
∑
β
=
0
n
∂
f
j
k
β
(
z
k
,
t
)
∂
t
∂
∂
z
j
β
{\displaystyle {\begin{aligned}\sum _{\alpha =0}^{n}{\frac {\partial f_{ik}^{\alpha }(z_{k},t)}{\partial t}}{\frac {\partial }{\partial z_{i}^{\alpha }}}=&\sum _{\alpha =0}^{n}{\frac {\partial f_{ij}^{\alpha }(z_{j},t)}{\partial t}}{\frac {\partial }{\partial z_{i}^{\alpha }}}\\&+\sum _{\beta =0}^{n}{\frac {\partial f_{jk}^{\beta }(z_{k},t)}{\partial t}}{\frac {\partial }{\partial z_{j}^{\beta }}}\\\end{aligned}}}
Rewriting this as the vector fields
θ
i
k
(
t
)
=
θ
i
j
(
t
)
+
θ
j
k
(
t
)
{\displaystyle \theta _{ik}(t)=\theta _{ij}(t)+\theta _{jk}(t)}
where
θ
i
j
(
t
)
=
∂
f
i
j
α
(
z
j
,
t
)
∂
t
∂
∂
z
i
α
{\displaystyle \theta _{ij}(t)={\frac {\partial f_{ij}^{\alpha }(z_{j},t)}{\partial t}}{\frac {\partial }{\partial z_{i}^{\alpha }}}}
gives the cocycle condition. Hence
θ
i
j
{\displaystyle \theta _{ij}}
has an associated class in
[
θ
i
j
]
∈
H
1
(
M
,
T
M
)
{\displaystyle [\theta _{ij}]\in H^{1}(M,T_{M})}
from the original deformation
f
~
i
j
{\displaystyle {\tilde {f}}_{ij}}
of
f
i
j
{\displaystyle f_{ij}}
.
Deformations of a smooth variety[ 5]
X
→
X
↓
↓
Spec
(
k
)
→
Spec
(
k
[
ε
]
)
{\displaystyle {\begin{matrix}X&\to &{\mathfrak {X}}\\\downarrow &&\downarrow \\{\text{Spec}}(k)&\to &{\text{Spec}}(k[\varepsilon ])\end{matrix}}}
have a Kodaira-Spencer class constructed cohomologically. Associated to this deformation is the short exact sequence
0
→
π
∗
Ω
Spec
(
k
[
ε
]
)
1
→
Ω
X
1
→
Ω
X
/
S
1
→
0
{\displaystyle 0\to \pi ^{*}\Omega _{{\text{Spec}}(k[\varepsilon ])}^{1}\to \Omega _{\mathfrak {X}}^{1}\to \Omega _{{\mathfrak {X}}/S}^{1}\to 0}
(where
π
:
X
→
S
=
Spec
(
k
[
ε
]
)
{\displaystyle \pi :{\mathfrak {X}}\to S={\text{Spec}}(k[\varepsilon ])}
) which when tensored by the
O
X
{\displaystyle {\mathcal {O}}_{\mathfrak {X}}}
-module
O
X
{\displaystyle {\mathcal {O}}_{X}}
gives the short exact sequence
0
→
O
X
→
Ω
X
1
⊗
O
X
→
Ω
X
1
→
0
{\displaystyle 0\to {\mathcal {O}}_{X}\to \Omega _{\mathfrak {X}}^{1}\otimes {\mathcal {O}}_{X}\to \Omega _{X}^{1}\to 0}
Using derived categories , this defines an element in
R
Hom
(
Ω
X
1
,
O
X
[
+
1
]
)
≅
R
Hom
(
O
X
,
T
X
[
+
1
]
)
≅
Ext
1
(
O
X
,
T
X
)
≅
H
1
(
X
,
T
X
)
{\displaystyle {\begin{aligned}\mathbf {R} {\text{Hom}}(\Omega _{X}^{1},{\mathcal {O}}_{X}[+1])&\cong \mathbf {R} {\text{Hom}}({\mathcal {O}}_{X},T_{X}[+1])\\&\cong {\text{Ext}}^{1}({\mathcal {O}}_{X},T_{X})\\&\cong H^{1}(X,T_{X})\end{aligned}}}
generalizing the Kodaira–Spencer map. Notice this could be generalized to any smooth map
f
:
X
→
Y
{\displaystyle f:X\to Y}
in
Sch
/
S
{\displaystyle {\text{Sch}}/S}
using the cotangent sequence, giving an element in
H
1
(
X
,
T
X
/
Y
⊗
f
∗
(
Ω
Y
/
Z
1
)
)
{\displaystyle H^{1}(X,T_{X/Y}\otimes f^{*}(\Omega _{Y/Z}^{1}))}
.
One of the most abstract constructions of the Kodaira–Spencer maps comes from the cotangent complexes associated to a composition of maps of ringed topoi
X
→
f
Y
→
Z
{\displaystyle X\xrightarrow {f} Y\to Z}
Then, associated to this composition is a distinguished triangle
f
∗
L
Y
/
Z
→
L
X
/
Z
→
L
X
/
Y
→
[
+
1
]
{\displaystyle f^{*}\mathbf {L} _{Y/Z}\to \mathbf {L} _{X/Z}\to \mathbf {L} _{X/Y}\xrightarrow {[+1]} }
and this boundary map forms the Kodaira–Spencer map[ 6] (or cohomology class, denoted
K
(
X
/
Y
/
Z
)
{\displaystyle K(X/Y/Z)}
). If the two maps in the composition are smooth maps of schemes, then this class coincides with the class in
H
1
(
X
,
T
X
/
Y
⊗
f
∗
(
Ω
Y
/
Z
1
)
)
{\displaystyle H^{1}(X,T_{X/Y}\otimes f^{*}(\Omega _{Y/Z}^{1}))}
.
The Kodaira–Spencer map when considering analytic germs is easily computable using the tangent cohomology in deformation theory and its versal deformations.[ 7] For example, given the germ of a polynomial
f
(
z
1
,
…
,
z
n
)
∈
C
{
z
1
,
…
,
z
n
}
=
H
{\displaystyle f(z_{1},\ldots ,z_{n})\in \mathbb {C} \{z_{1},\ldots ,z_{n}\}=H}
, its space of deformations can be given by the module
T
1
=
H
d
f
⋅
H
n
{\displaystyle T^{1}={\frac {H}{df\cdot H^{n}}}}
For example, if
f
=
y
2
−
x
3
{\displaystyle f=y^{2}-x^{3}}
then its versal deformations is given by
T
1
=
C
{
x
,
y
}
(
y
,
x
2
)
{\displaystyle T^{1}={\frac {\mathbb {C} \{x,y\}}{(y,x^{2})}}}
hence an arbitrary deformation is given by
F
(
x
,
y
,
a
1
,
a
2
)
=
y
2
−
x
3
+
a
1
+
a
2
x
{\displaystyle F(x,y,a_{1},a_{2})=y^{2}-x^{3}+a_{1}+a_{2}x}
. Then for a vector
v
∈
T
0
(
C
2
)
{\displaystyle v\in T_{0}(\mathbb {C} ^{2})}
, which has the basis
∂
∂
a
1
,
∂
∂
a
2
{\displaystyle {\frac {\partial }{\partial a_{1}}},{\frac {\partial }{\partial a_{2}}}}
there the map
K
S
:
v
↦
v
(
F
)
{\displaystyle KS:v\mapsto v(F)}
sending
ϕ
1
∂
∂
a
1
+
ϕ
2
∂
∂
a
2
↦
ϕ
1
∂
F
∂
a
1
+
ϕ
2
∂
F
∂
a
2
=
ϕ
1
+
ϕ
2
⋅
x
{\displaystyle {\begin{aligned}\phi _{1}{\frac {\partial }{\partial a_{1}}}+\phi _{2}{\frac {\partial }{\partial a_{2}}}\mapsto &\phi _{1}{\frac {\partial F}{\partial a_{1}}}+\phi _{2}{\frac {\partial F}{\partial a_{2}}}\\&=\phi _{1}+\phi _{2}\cdot x\end{aligned}}}
On affine hypersurfaces with the cotangent complex
edit
For an affine hypersurface
i
:
X
0
↪
A
n
→
Spec
(
k
)
{\displaystyle i:X_{0}\hookrightarrow \mathbb {A} ^{n}\to {\text{Spec}}(k)}
over a field
k
{\displaystyle k}
defined by a polynomial
f
{\displaystyle f}
, there is the associated fundamental triangle
i
∗
L
A
n
/
Spec
(
k
)
→
L
X
0
/
Spec
(
k
)
→
L
X
0
/
A
n
→
[
+
1
]
{\displaystyle i^{*}\mathbf {L} _{\mathbb {A} ^{n}/{\text{Spec}}(k)}\to \mathbf {L} _{X_{0}/{\text{Spec}}(k)}\to \mathbf {L} _{X_{0}/\mathbb {A} ^{n}}\xrightarrow {[+1]} }
Then, applying
R
H
o
m
(
−
,
O
X
0
)
{\displaystyle \mathbf {RHom} (-,{\mathcal {O}}_{X_{0}})}
gives the long exact sequence
RHom
(
i
∗
L
A
n
/
Spec
(
k
)
,
O
X
0
[
+
1
]
)
←
RHom
(
L
X
0
/
Spec
(
k
)
,
O
X
0
[
+
1
]
)
←
RHom
(
L
X
0
/
A
n
,
O
X
0
[
+
1
]
)
←
RHom
(
i
∗
L
A
n
/
Spec
(
k
)
,
O
X
0
)
←
RHom
(
L
X
0
/
Spec
(
k
)
,
O
X
0
)
←
RHom
(
L
X
0
/
A
n
,
O
X
0
)
{\displaystyle {\begin{aligned}&{\textbf {RHom}}(i^{*}\mathbf {L} _{\mathbb {A} ^{n}/{\text{Spec}}(k)},{\mathcal {O}}_{X_{0}}[+1])\leftarrow {\textbf {RHom}}(\mathbf {L} _{X_{0}/{\text{Spec}}(k)},{\mathcal {O}}_{X_{0}}[+1])\leftarrow {\textbf {RHom}}(\mathbf {L} _{X_{0}/\mathbb {A} ^{n}},{\mathcal {O}}_{X_{0}}[+1])\\\leftarrow &{\textbf {RHom}}(i^{*}\mathbf {L} _{\mathbb {A} ^{n}/{\text{Spec}}(k)},{\mathcal {O}}_{X_{0}})\leftarrow {\textbf {RHom}}(\mathbf {L} _{X_{0}/{\text{Spec}}(k)},{\mathcal {O}}_{X_{0}})\leftarrow {\textbf {RHom}}(\mathbf {L} _{X_{0}/\mathbb {A} ^{n}},{\mathcal {O}}_{X_{0}})\end{aligned}}}
Recall that there is the isomorphism
RHom
(
L
X
0
/
Spec
(
k
)
,
O
X
0
[
+
1
]
)
≅
Ext
1
(
L
X
0
/
Spec
(
k
)
,
O
X
0
)
{\displaystyle {\textbf {RHom}}(\mathbf {L} _{X_{0}/{\text{Spec}}(k)},{\mathcal {O}}_{X_{0}}[+1])\cong {\text{Ext}}^{1}(\mathbf {L} _{X_{0}/{\text{Spec}}(k)},{\mathcal {O}}_{X_{0}})}
from general theory of derived categories, and the ext group classifies the first-order deformations. Then, through a series of reductions, this group can be computed. First, since
L
A
n
/
Spec
(
k
)
≅
Ω
A
n
/
Spec
(
k
)
1
{\displaystyle \mathbf {L} _{\mathbb {A} ^{n}/{\text{Spec}}(k)}\cong \Omega _{\mathbb {A} ^{n}/{\text{Spec}}(k)}^{1}}
is a free module ,
RHom
(
i
∗
L
A
n
/
Spec
(
k
)
,
O
X
0
[
+
1
]
)
=
0
{\displaystyle {\textbf {RHom}}(i^{*}\mathbf {L} _{\mathbb {A} ^{n}/{\text{Spec}}(k)},{\mathcal {O}}_{X_{0}}[+1])=0}
. Also, because
L
X
0
/
A
n
≅
I
/
I
2
[
+
1
]
{\displaystyle \mathbf {L} _{X_{0}/\mathbb {A} ^{n}}\cong {\mathcal {I}}/{\mathcal {I}}^{2}[+1]}
, there are isomorphisms
RHom
(
L
X
0
/
A
n
,
O
X
0
[
+
1
]
)
≅
RHom
(
I
/
I
2
[
+
1
]
,
O
X
0
[
+
1
]
)
≅
RHom
(
I
/
I
2
,
O
X
0
)
≅
Ext
0
(
I
/
I
2
,
O
X
0
)
≅
Hom
(
I
/
I
2
,
O
X
0
)
≅
O
X
0
{\displaystyle {\begin{aligned}{\textbf {RHom}}(\mathbf {L} _{X_{0}/\mathbb {A} ^{n}},{\mathcal {O}}_{X_{0}}[+1])\cong &{\textbf {RHom}}({\mathcal {I}}/{\mathcal {I}}^{2}[+1],{\mathcal {O}}_{X_{0}}[+1])\\\cong &{\textbf {RHom}}({\mathcal {I}}/{\mathcal {I}}^{2},{\mathcal {O}}_{X_{0}})\\\cong &{\text{Ext}}^{0}({\mathcal {I}}/{\mathcal {I}}^{2},{\mathcal {O}}_{X_{0}})\\\cong &{\text{Hom}}({\mathcal {I}}/{\mathcal {I}}^{2},{\mathcal {O}}_{X_{0}})\\\cong &{\mathcal {O}}_{X_{0}}\end{aligned}}}
The last isomorphism comes from the isomorphism
I
/
I
2
≅
I
⊗
O
A
n
O
X
0
{\displaystyle {\mathcal {I}}/{\mathcal {I}}^{2}\cong {\mathcal {I}}\otimes _{{\mathcal {O}}_{\mathbb {A} ^{n}}}{\mathcal {O}}_{X_{0}}}
, and a morphism in
Hom
O
X
0
(
I
⊗
O
A
n
O
X
0
,
O
X
0
)
{\displaystyle {\text{Hom}}_{{\mathcal {O}}_{X_{0}}}({\mathcal {I}}\otimes _{{\mathcal {O}}_{\mathbb {A} ^{n}}}{\mathcal {O}}_{X_{0}},{\mathcal {O}}_{X_{0}})}
send
[
g
f
]
↦
g
′
g
+
(
f
)
{\displaystyle [gf]\mapsto g'g+(f)}
giving the desired isomorphism. From the cotangent sequence
(
f
)
(
f
)
2
→
[
g
]
↦
d
g
⊗
1
Ω
A
n
1
⊗
O
X
0
→
Ω
X
0
/
Spec
(
k
)
1
→
0
{\displaystyle {\frac {(f)}{(f)^{2}}}\xrightarrow {[g]\mapsto dg\otimes 1} \Omega _{\mathbb {A} ^{n}}^{1}\otimes {\mathcal {O}}_{X_{0}}\to \Omega _{X_{0}/{\text{Spec}}(k)}^{1}\to 0}
(which is a truncated version of the fundamental triangle) the connecting map of the long exact sequence is the dual of
[
g
]
↦
d
g
⊗
1
{\displaystyle [g]\mapsto dg\otimes 1}
, giving the isomorphism
Ext
1
(
L
X
0
/
k
,
O
X
0
)
≅
k
[
x
1
,
…
,
x
n
]
(
f
,
∂
f
∂
x
1
,
…
,
∂
f
∂
x
n
)
{\displaystyle {\text{Ext}}^{1}(\mathbf {L} _{X_{0}/k},{\mathcal {O}}_{X_{0}})\cong {\frac {k[x_{1},\ldots ,x_{n}]}{\left(f,{\frac {\partial f}{\partial x_{1}}},\ldots ,{\frac {\partial f}{\partial x_{n}}}\right)}}}
Note this computation can be done by using the cotangent sequence and computing
Ext
1
(
Ω
X
0
1
,
O
X
0
)
{\displaystyle {\text{Ext}}^{1}(\Omega _{X_{0}}^{1},{\mathcal {O}}_{X_{0}})}
.[ 8] Then, the Kodaira–Spencer map sends a deformation
k
[
ε
]
[
x
1
,
…
,
x
n
]
f
+
ε
g
{\displaystyle {\frac {k[\varepsilon ][x_{1},\ldots ,x_{n}]}{f+\varepsilon g}}}
to the element
g
∈
Ext
1
(
L
X
0
/
k
,
O
X
0
)
{\displaystyle g\in {\text{Ext}}^{1}(\mathbf {L} _{X_{0}/k},{\mathcal {O}}_{X_{0}})}
.