In numerical analysis Gauss–Laguerre quadrature (named after Carl Friedrich Gauss and Edmond Laguerre) is an extension of the Gaussian quadrature method for approximating the value of integrals of the following kind:
In this case
where xi is the i-th root of Laguerre polynomial Ln(x) and the weight wi is given by[1]
The following Python code with the SymPy library will allow for calculation of the values of and to 20 digits of precision:
from sympy import *
def lag_weights_roots(n):
x = Symbol("x")
roots = Poly(laguerre(n, x)).all_roots()
x_i = [rt.evalf(20) for rt in roots]
w_i = [(rt / ((n + 1) * laguerre(n + 1, rt)) ** 2).evalf(20) for rt in roots]
return x_i, w_i
print(lag_weights_roots(5))
For more general functions
editTo integrate the function we apply the following transformation
where . For the last integral one then uses Gauss-Laguerre quadrature. Note, that while this approach works from an analytical perspective, it is not always numerically stable.
Generalized Gauss–Laguerre quadrature
editMore generally, one can also consider integrands that have a known power-law singularity at x=0, for some real number , leading to integrals of the form:
In this case, the weights are given[2] in terms of the generalized Laguerre polynomials:
where are the roots of .
This allows one to efficiently evaluate such integrals for polynomial or smooth f(x) even when α is not an integer.[3]
References
edit- ^ Equation 25.4.45 in Abramowitz, M.; Stegun, I. A. Handbook of Mathematical Functions. Dover. ISBN 978-0-486-61272-0. 10th reprint with corrections.
- ^ Weisstein, Eric W., "Laguerre-Gauss Quadrature" From MathWorld--A Wolfram Web Resource, Accessed March 9, 2020
- ^ Rabinowitz, P.; Weiss, G. (1959). "Tables of Abscissas and Weights for Numerical Evaluation of Integrals of the form ". Mathematical Tables and Other Aids to Computation. 13: 285–294. doi:10.1090/S0025-5718-1959-0107992-3.
Further reading
edit- Salzer, H. E.; Zucker, R. (1949). "Table of zeros and weight factors of the first fifteen Laguerre polynomials". Bulletin of the American Mathematical Society. 55 (10): 1004–1012. doi:10.1090/S0002-9904-1949-09327-8.
- Concus, P.; Cassatt, D.; Jaehnig, G.; Melby, E. (1963). "Tables for the evaluation of by Gauss-Laguerre quadrature". Mathematics of Computation. 17: 245–256. doi:10.1090/S0025-5718-1963-0158534-9.
- Shao, T. S.; Chen, T. C.; Frank, R. M. (1964). "Table of zeros and Gaussian Weights of certain Associated Laguerre Polynomials and the related Hermite Polynomials". Mathematics of Computation. 18 (88): 598–616. doi:10.1090/S0025-5718-1964-0166397-1. JSTOR 2002946. MR 0166397.
- Ehrich, S. (2002). "On stratified extensions of Gauss-Laguerre and Gauss-Hermite quadrature formulas". Journal of Computational and Applied Mathematics. 140 (1–2): 291–299. doi:10.1016/S0377-0427(01)00407-1.
External links
edit- Matlab routine for Gauss–Laguerre quadrature
- Generalized Gauss–Laguerre quadrature, free software in Matlab, C++, and Fortran.