Landspout is a term created by atmospheric scientist Howard B. Bluestein in 1985 for a tornado not associated with a mesocyclone.[3] The Glossary of Meteorology defines a landspout:
- "Colloquial expression describing tornadoes occurring with a parent cloud in its growth stage and with its vorticity originating in the boundary layer.
- The parent cloud does not contain a preexisting mid-level mesocyclone. The landspout was so named because it looks like "a weak Florida Keys waterspout over land."[4]
Landspouts are typically weaker than mesocyclone-associated tornadoes spawned within supercell thunderstorms, in which the strongest tornadoes form.
Characteristics
editLandspouts are a type of tornado that forms during the growth stage of a cumulus congestus or occasionally a cumulonimbus cloud when an updraft stretches boundary layer vorticity upward into a vertical axis and tightens it into a strong vortex. Landspouts can also occur due to interactions from outflow boundaries, as they can occasionally cause enhanced convergence and vorticity at the surface. These generally are smaller and weaker than supercell tornadoes and do not form from a mesocyclone or pre-existing rotation in the cloud. Because of this lower depth, smaller size, and weaker intensity, landspouts are rarely detected by Doppler weather radar (NWS).[5]
Landspouts share a strong resemblance and development process to that of waterspouts, usually taking the form of a translucent and highly laminar helical tube. "They are typically narrow, rope-like condensation funnels that form while the thunderstorm cloud is still growing and there is no rotating updraft", according to the National Weather Service.[2] Landspouts are considered tornadoes since a rapidly rotating column of air is in contact with both the surface and a cumuliform cloud. Not all landspouts are visible, and many are first sighted as debris swirling at the surface before eventually filling in with condensation and dust.
Orography can influence landspout (and even mesocyclone tornado) formation. A notable example is the propensity for landspout occurrence in the Denver Convergence Vorticity Zone (DCVZ).
Life cycle
editForming in relation to mesocyclones and under updrafts, a landspout generally lasts for less than 15 minutes; however, they can persist substantially longer, and produce significant damage. Landspouts tend to progress through recognizable stages of formation, maturation, and dissipation, and usually decay when a downdraft or significant precipitation (outflow) occur nearby. They may form in lines or groups of multiple landspouts.[6]
Damage
editLandspouts are usually at EF0 level where the intensity of winds is low and weak. However, winds inside a Landspout tornado can reach 100 miles per hour (MPH).[7]
See also
editReferences
edit- ^ Judson Jones (21 May 2020). "Why Landspout Tornadoes are Common in Colorado". The Denver Post.
- ^ a b Judson Jones (8 June 2021). "The No. 1 US county for producing tornadoes just spawned another landspout". CNN.
- ^ Bluestein, Howard B. (1985). "A History of Severe-Storm-Intercept Field Programs". Weather and Forecasting. 14 (4): 267–270. Bibcode:1999WtFor..14..558B. doi:10.1175/1520-0434(1999)014<0558:AHOSSI>2.0.CO;2. ISSN 1520-0434.
- ^ American Meteorological Society (2000). "Glossary of Meteorology, Second Edition". ametsoc.org. Archived from the original on 6 April 2007. Retrieved 27 March 2007.
- ^ Wakimoto; Wilson (1989). "Non-supercell Tornadoes". Monthly Weather Review. 117 (6): 1113–1140. Bibcode:1989MWRv..117.1113W. doi:10.1175/1520-0493(1989)117<1113:NST>2.0.CO;2.
- ^ Forbes; Wakimoto (1983). "A Concentrated Outbreak of Tornadoes, Downbursts and Microbursts, and Implications Regarding Vortex Classification". Monthly Weather Review. 111 (1): 220–235. Bibcode:1983MWRv..111..220F. doi:10.1175/1520-0493(1983)111<0220:ACOOTD>2.0.CO;2.
- ^ "Tornado Facts". Retrieved August 9, 2024.
External links
edit- Media related to Landspouts at Wikimedia Commons
- Advanced Spotters' Field Guide
- Online Tornado FAQ