The following are lists of extremes among the known exoplanets. The properties listed here are those for which values are known reliably. It is important to note that the study of exoplanets is one of the most dynamic emerging fields of science, and these values may change wildly as new discoveries are made.
Extremes from Earth's viewpoint
editTitle | Planet | Star | Data | Notes |
---|---|---|---|---|
Most distant discovered | SWEEPS-11 / SWEEPS-04 | SWEEPS J175902.67−291153.5 / SWEEPS J175853.92−291120.6 | 27 710 light-years[1] | Several candidate extragalactic planets have been detected.
Assuming the largest distance value from the microlensing light-curve, the planet OGLE-2017-BLG-0364Lb might be more distant, at around 32 600 light-years (10 000 pc).[2] SGR 1935+2154 b could also be the most distant exoplanet, with distance estimates ranging from 21,500[3] to 28,400 ly.[4] The most distant potentially habitable planet confirmed is Kepler-1606b, at 2870 light-years distant,[5] although the unconfirmed planet KOI-5889.01 is over 5000 light-years distant. On 31 March 2022, K2-2016-BLG-0005Lb was reported to be the most distant exoplanet discovered by the Kepler telescope, at 17 000 light-years away.[6] |
Least distant | Proxima Centauri b, (c and d) | Proxima Centauri | 4.25 light-years | Proxima Centauri b and (the candidate planet) d are the closest potentially rocky exoplanets,[7] b is the closest potentially habitable exoplanet known, and (the disputed planet) c is the closest mini-Neptune/Super-Earth and potentially ringed planet. As Proxima Centauri is the closest star to the Sun (and will stay so for the next 25 000 years), this is an absolute record. |
Most distant directly visible | CT Chamaeleontis b | CT Chamaeleontis | 622 light-years[8] | The disputed planet candidate CVSO 30 c may be more distant, at 1,200 light-years. |
Closest directly visible | Epsilon Indi Ab | Epsilon Indi | 12.05 light-years | COCONUTS-2b at 35.5 light-years is the next closest directly visible.[8]
Proxima Centauri c (confirmed in 2020 using archival Hubble data from 1995+) may have been directly imaged.[9] |
Star with the brightest apparent magnitude with a planet | Alpha Arietis | Hamal[8][a] | Apparent magnitude is 2.005 | Alpha Centauri A (apparent magnitude 0.01) has a planet candidate. The evidence of planets around Vega with an apparent magnitude of 0.03 is strongly suggested by circumstellar disks surrounding it.[10] As of 2021[update], a candidate planet around Vega has been detected.[11]
Aldebaran (apparent magnitude varies between 0.75 and 0.95) was suspected to have a candidate planet, however later studies found the existence of the planet inconclusive.[12] Pollux (apparent magnitude 1.14[13]) has a reported planet (Thestias), but the existence of this planet has been questioned.[14][15] Mirfak (α Per, apparent magnitude 1.806) was claimed to have an orbiting planet, whose existence has likewise been disputed.[16] A 2023 study detected 10 luminous point sources around the primary star of Fomalhaut system (apparent magnitude = 1.16), of which the last source may be either an unrelated background object or a planetary-mass companion.[17] |
Star with the faintest apparent magnitude with a planet | MOA-bin-29Lb | MOA-bin-29L | Apparent magnitude is 44.61[8] | |
Star with the highest apparent motion (i.e, proper motion) with a planet | Barnard's Star b[18] | Barnard's Star | 10.358 arcsec/yr[19] |
As Barnard's Star has the highest apparent motion in the sky,[19] this is currently an absolute record. |
Largest angular distance separation from its host star | COCONUTS-2b | COCONUTS-2 | 594 arcseconds[20] | A candidate planet or brown dwarf around BD+29 5007 might have an even larger angular separation of about 935 arcseconds.[21] |
Smallest angular distance separation from its parent star | SWIFT J1756.9−2508 b | SWIFT J1756.9−2508 | 0.34 microarcseconds | Derived from its separation of 0.00269 AU and its distance of ~26 000 light-years (8000 pc).[22] |
Planetary characteristics
editTitle | Planet | Star | Data | Notes |
---|---|---|---|---|
Most massive | The most massive planet is difficult to define due to the blurry line between planets and brown dwarfs. If the borderline is defined as the deuterium fusion threshold (roughly 13 MJ at solar metallicity[23][b]), the most massive planets are those with true mass closest to that cutoff; if planets and brown dwarfs are differentiated based on formation, their mass ranges overlap.[24][25]: 62 A candidate for the most massive object that formed in a protoplanetary disk is HD 206893 b, at about 28 MJ. Both this object and its 13 MJ sibling HD 206893 c fuse deuterium.[26][27] | |||
Least massive | PSR B1257+12 b (Draugr) | PSR B1257+12 (Lich) | 0.020±0.002 M🜨[8] | The extrasolar planetesimal WD 1145+017 b is less massive, at 0.00067 ME.[20]
A candidate planet at PSR J0337+1715 is even lighter, with half of the Moon's mass or 0.062 ME.[28] |
Largest radius | DH Tauri Ab | DH Tauri | 2.7±0.8 RJ[29] | Next largest is PDS 70 b with 2.09+0.23 −0.31 – 2.72+0.15 −0.17 RJ.[30] Proplyd 133-353 is larger at up to 7.4±0.3 – 8.0±1.1 RJ.[31][c] It might be considered as a sub-brown dwarf or a rogue planet, with a photoevaporating disk. HAT-P-67b has the largest accurately and precisely measured radius, at 2.165+0.024 |
Smallest radius | Kepler-37b | Kepler-37 | 0.296±0.037 R🜨[8] | The extrasolar planetesimals SDSS J1228+1040 b[33] and WD 1145+017 b are smaller. |
Most dense | PSR J1719−1438 b | PSR J1719−1438 | ≥ 23 g/cm3 [34] | According to the IAU working definition of exoplanets PSR J1719−1438 b, being slightly more massive than Jupiter, is an exoplanet, despite it possibly formed like a white dwarf from a yellow dwarf star and suffered from the influence of the host star to become a carbon-rich diamond-like object. For reference, it is about as dense or denser than Osmium at 293 K, the densest naturally occurring element on Earth.
TOI-4603b is the next densest with 14.1+1.7 KELT-1b is similarly dense with 22.1+5.62 |
Least dense | Kepler-51c and/or possibly d | Kepler-51[39] | 0.034+0.069 −0.019 g/cm3 [40] |
The bulk density of Kepler-51 d has been constrained to be 0.038 ± 0.006 g/cm3.[40] Next least dense are the Hot Saturn HAT-P-67 with about 0.044 g/cm3 and the super-Neptune planet WASP-193b, with 0.059 ± 0.014 g/cm3.[41] |
Largest ratio of rotation rate to breakup velocity | Kappa Andromedae b | Kappa Andromedae | ~0.5 [42] | |
Hottest (irradiated hot Jupiter) | KELT-9b | KELT-9 | 4050 ± 180 K[8](3777 °C) | The unconfirmed planets Kepler-70b and Kepler-70c may be hotter, both at >6800 K (assuming an albedo of 0.1 for both).[43] |
Hottest (self-luminous) | GQ Lupi b | GQ Lupi | 2650 ± 100 K[44](2377 °C) | Depending on its mass value, GQ Lupi b may be either a massive planet or a brown dwarf.[45] |
Coldest | OGLE-2005-BLG-390Lb | OGLE-2005-BLG-390L | 50 K (−223.2 °C)[46][d] | The disputed planet Proxima Centauri c may be cooler, at 39 K (−234.2 °C).[47] |
Highest albedo | LTT 9779 b | LTT 9779 | 0.8[48] | For comparison, Earth is 0.3 and Venus is 0.76. |
Lowest albedo | TrES-2b | GSC 03549-02811 | Geometric albedo < 1%[49] | Best-fit model for albedo gives 0.04% (0.0004).[43] |
Youngest | DH Tauri b | DH Tauri | 0.7+0.3 −0.2 Myr[50] |
The free-floating planet or sub-brown dwarf Proplyd 133-353 is younger, at 0.5 Myr.[51][52] However, as a free-floating planet, it does not meet the IAU's working definition of a planet.[53]
2MASS J04414489+2301513 b is listed as the youngest planet in the NASA Exoplanet Archive, at an age of 1 Myr,[8] but fails the mass ratio criterion of the IAU working definition of an exoplanet; the mass ratio with the primary is larger than the L4/L5 limit of stability ≈ 1/25[53] and 'more likely to have been produced by cloud core fragmentation' (like a star).[54] IRAS 04125+2902 b is the youngest transiting planet at an age of 3 Myr.[55] CI Tauri c would be the youngest radial velocity planet at an age of 2–3 Myr, if confirmed.[56] |
Oldest | TOI-157 b | TOI-157 | 12.82+0.73 −1.40 Gyr[57] |
The currently accepted age of the universe is around 13.8 billion years. Could alternatively be PSR B1620-26 b with 11.2–12.7 Gyr.[58] |
Orbital characteristics
editTitle | Planet | Star | Data | Notes |
---|---|---|---|---|
Longest orbital period (Longest year) |
Gliese 900 b (CW2335+0142) | Gliese 900 | 1.27 million years[59][8][e] | COCONUTS-2b previously held this record at 1,100,000 years. |
Shortest orbital period (Shortest year) |
SDSS J1730+5545 b | SDSS J1730+5545 | 0.5866 h (35 minutes)[60] | K2-137b has the shortest orbit around a main-sequence star (an M dwarf) at 4.31 hours.[61] |
Largest orbital separation | Gliese 900 b (CW2335+0142) | Gliese 900 | 12 000 AU[62][8] | UCAC4 328-061594 b has an even longer orbital separation (19 000 AU), although its mass (21 MJ) [8][62] is higher than the deuterium burning limit (13 MJ).
Another candidate around BD+29 5007 has an even larger orbit of about 22 100 AU. There is no consensus about its age and resulting mass, and it could be a field brown dwarf. The companion of ASASSN-21js has an orbit of 13 000 AU, but it is unknown if it is a brown dwarf or a planet due to its unknown mass.[63] |
Smallest orbital separation | SDSS J1730+5545 b | SDSS J1730+5545 | 0.00139 AU[60] | |
Most eccentric orbit | SGR 1935+2154 b | SGR 1935+2154 | 0.992 or 0.994 | [4] |
Highest orbital inclination | HD 204313 e | HD 204313 | 176.092°+0.963° −2.122° |
[64][65] |
Lowest orbital inclination | HD 331093 b | HD 331093 | >0.3704° | [66][65] HD 43197 c has the lowest orbital inclination that is not a lower limit, of 11.42°+5.388° −3.07°.[65] |
Largest orbit around a single star | COCONUTS-2b | L 34-26 | 7506 AU | Next largest are 2MASS J2126–8140 with 6900 AU and HD 106906 b[67] with ~738 AU.
UCAC4 328-061594 b has an even longer orbital separation (19,000 AU), although its mass (21 MJ)[8][62] is higher than the deuterium burning limit (13 MJ). |
Smallest orbit around binary star | Kepler-47b | Kepler-47AB | 0.2877+0.0014 −0.0011 AU[8] |
[68] |
Smallest ratio of semi-major axis of a planet orbit to binary star orbit | Kepler-16b | Kepler-16AB | 3.14 ± 0.01 | [69] |
Largest orbit around binary star | SR 12 (AB) c | SR 12 AB | ≈1100 AU[70] | SR 12 (AB) c has a mass of 0.013±0.007 M☉.[70]
ROXs 42B (AB) b is lower in mass at 9.0+6 DT Virginis c, also known as Ross 458 (AB) c, at a projected separation of ≈1200 AU, with several mass estimates below the deuterium burning limit, has a latest mass determination of 27±4 MJ.[72] |
Largest orbit around a single star in a multiple star system | DH Tauri b | DH Tauri | 330 AU[73] | |
Largest separation between binary stars with a circumbinary planet | SR 12 (AB) c | SR 12 AB | ≈26 AU[70] | SR 12 (AB) c has a mass of 0.013±0.007 M☉ at a projected separation of ≈1100 AU.[70]
FW Tauri b orbits at a projected separation of 330±30 AU around a ≈11 AU separated binary.[74] It was shown to be more likely a 0.1 M☉ star surrounded by a protoplanetary disk than a planetary-mass companion.[75] |
Largest orbit around three stars | Gliese 900 b (CW2335+0142) | Gliese 900 | 12 000 AU[62][8] | |
Closest orbit between stars with a planet orbiting one of the stars (S-type planet) | DMPP-3 Ab | HD 42936 | 1.139 AU[76][77] | DMPP-3 Ab's semi-major axis is around 0.067 AU. The next closest orbit between stars with an S-type planet occurs in Nu Octantis system, of which the separation between the stellar components is 2.629 AU.[78] |
Smallest semi-major axis ratio between consecutive planets | Kepler-36b and Kepler-36c | Kepler-36 | 1.11 | Kepler-36b and c have semi-major axes of 0.1153 AU and 0.1283 AU, respectively; hence the planet c is 1.11 times further from star than b. |
Largest semi-major axis ratio between consecutive planets | HD 83443 b and HD 83443 c | HD 83443 | 205.1 | HD 83443 b and c have semi-major axes of 0.039 AU and 8.0 AU,[79] respectively; hence the planet c is 205.1 times further from star than b. |
Stellar characteristics
editTitle | Planet | Star | Data | Notes |
---|---|---|---|---|
Highest metallicity | HD 126614 Ab | HD 126614 A | +0.56 dex | Located in a triple star system. |
Lowest metallicity | K2-344b | K2-344 | −0.95±0.02 dex[8] | BD+20°2457 may be the lowest-metallicity planet host ([Fe/H]=−1.00); however, the proposed planetary system is dynamically unstable.[80]
Planets were announced around even the extremely low-metallicity stars HIP 13044 and HIP 11952; however, these claims have since been disproven.[81] A brown dwarf or massive planetary companion was announced around the population II star HE 1523-0901, whose metallicity is −2.65±0.22 dex.[82] While the inclination of the companion is not known, if its orbit is nearly face-on, it would be sufficiently massive to become a red dwarf instead.[83] |
Highest stellar mass | b Centauri b | b Centauri | 5 - 6 M☉ | Pipirima has a higher mass of 9.1±0.3 M☉,[84] but its planet candidate Mu2 Scorpii b is most likely a brown dwarf having 14.4 ± 0.8 MJ.
The candidate planet M51-ULS-1b and the candidate planemo IGR J12580+0134 b might be the blanets, whose hosts have masses of ≫10 and 9 150 000 Solar masses, respectively.[85][86] The stars R126 (HD 37974), R66 (HD 268835) and HH 1177 in the Large Magellanic Cloud have masses of 70, 30 and 15 solar masses and have dust discs[87] but no planets have been detected yet. |
Lowest stellar mass (main sequence) | KMT-2021-BLG-1554Lb | KMT-2021-BLG-1554L | 0.08+0.013 −0.014 M☉[65] |
The mass of this star is near the hydrogen burning limit.
KMT-2016-BLG-2142L has a lower mass of 0.073+0.117 |
Largest stellar radius | HD 208527 b | HD 208527 | 51.1±8.3 R☉[8] | Other stars, such as HD 18438, Mirach and Delta Virginis are larger, but their substellar companions are more massive than the deuterium burning limit (13 MJ), and thus might be brown dwarfs rather than exoplanets.[8]
R Leonis (320-350 R☉)[88] has a candidate planet. R Fornacis at 585 R☉[f] also has a planet candidate.[89][90] The stars R126 and R66 in the Large Magellanic Cloud have radius of 78 R☉ and 131 R☉[91] and have dust discs but no planets have been detected yet. |
Smallest stellar radius (main sequence star) | TRAPPIST-1 planets | TRAPPIST-1 | 0.1192±0.0013 R☉[92] | VB 10 (0.102 R☉)[93] has a disproven planet candidate. |
Smallest stellar radius (stellar remnant) | SGR 1935+2154 b | SGR 1935+2154 | 4.35 km (6.25×10−6 R☉) | [3]
PSR B0943+10 may be a quark star. If so, its radius is predicted to be 2.6 km. If a normal neutron star, its radius is 10 km.[94] |
Highest stellar luminosity | Beta Cancri b | Beta Cancri | 794 L☉[65] | This is the most luminous star to host a planet that is not a potential brown dwarf.[65]
The star Mirfak, whose luminosity is 3780 L☉,[95] was claimed to have an orbiting planet with a minimum mass of 6.6 ± 0.2 Jupiter masses. However, the existence of the planet is doubtful.[16] R Leonis (at 3537 L☉)[88] has a candidate planet. R Fornacis (at 5800 L☉)[89] also has a candidate planet. The bright giant BD+20°2457 (at 1479 L☉[96]) was believed to have two planetary-mass companions orbiting although the claimed system configuration is dynamically unstable.[80] The stars R126 and R66 in the Large Magellanic Cloud have luminosities of 1400000 L☉ and 320000 L☉[91] and have dust discs but no planets have been detected yet. |
Lowest stellar luminosity (main sequence star) | TRAPPIST-1 planets | TRAPPIST-1 | 0.0005495 L☉ | [97][65] |
Hottest star with a planet | PSR B0943+10 b and c | PSR B0943+10 | 3 100 000 K[98] | Blackbody temperature of a small emitting area at the poles.[98] Suggested to actually be a low-mass quark star. |
Hottest non-degenerate star with a planet | NSVS 14256825 b | NSVS 14256825 | 40 000 K[99] | NN Serpentis is hotter, with a temperature of 57 000 K,[8] but the existence of its planets is disputed.[100] |
Hottest normal star with a planet[g] | b Centauri b | b Centauri | 18 310 ± 320 K[101] | V921 Scorpii b orbits a hotter star, at 30,000 K. Its host star is a 20-solar-mass B0IV-class subgiant.[102] However, at 60 Jupiter masses, it is not considered a planet under most definitions.
The candidate planet M51-ULS-1b's supergiant primary is an O5-class supergiant with an estimated surface temperature of 40,000 K. |
Coolest star with a planet | TRAPPIST-1 planets | TRAPPIST-1 | 2511 K | Technically Oph 162225-240515, CFBDSIR 1458+10 and WISE 1217+1626 are cooler, but are classified as brown dwarfs. |
System characteristics
editTitle | System(s) | Planet(s) | Star(s) | Notes |
---|---|---|---|---|
System with most planets | Kepler-90 | 8 | 1 | Tau Ceti currently has no confirmed planetary companion, although it has been proposed that the number of orbiting planets may be 8, 9 or even 10.[103] The four planets Tau Ceti e, f, g and h are considered as strong candidates.[104]
HD 10180 has six confirmed planets and potentially three more planets.[105] |
System with most planets in habitable zone | TRAPPIST-1 | 7 | 1 | Four planets in this system (d, e, f and g) orbit within the habitable zone.[106] |
System with most stars | Kepler-64 | PH1b (Kepler-64b) | 4 | PH1b has a circumbinary orbit.
30 Arietis Bb was believed to be either brown dwarf or a massive gas giant in a quadruple star system until later studies revealed a true mass well above 80 MJup.[107] The quintuple star system GG Tauri has several protoplanetary disks but no planets have been detected yet.[108] |
Multiplanetary system with smallest mean semi-major axis (planets are nearest to their star) | Kepler-42 | b, c, d | 1 | Kepler-42 b, c and d have a semi-major axis of 0.0116, 0.006 and 0.0154 AU, respectively.
Kepler-70 b, c and d (all unconfirmed and disputed) have a semi-major axis of only 0.006, 0.0076 and ~0.0065 AU, respectively. |
Multiplanetary system with largest mean semi-major axis (planets are farthest from their star) | TYC 8998-760-1 | b, c | 1 | TYC 8998-760-1 b and c have a semi-major axis of 162 and 320 AU, respectively.[8] |
Multiplanetary system with smallest range of semi-major axis (smallest difference between the star's nearest planet and its farthest planet) | Kepler-429 | b, c, d | 1 | Kepler-429 b, c and d have a semi-major axis of only 0.0116, 0.006 and 0.0154 AU, respectively. The separation between closest and furthest is only 0.0094 AU.
Kepler-70 b, c and d (all unconfirmed and disputed) have a semi-major axis of only 0.006, 0.0076 and ~0.0065 AU, respectively. The separation between closest and furthest is only 0.0016 AU (239,356 km). |
Multiplanetary system with largest range of semi-major axis (largest difference between the star's nearest planet and its farthest planet) | TYC 8998-760-1 | b, c | 1 | TYC 8998-760-1 b and c have a semi-major axis of 162 and 320 AU, respectively.[8] The separation between closest and furthest is 158 AU. |
System with smallest total planetary mass | Kepler-444 | b, c, d, e, f | 3 | The planets in the Kepler-444 system have radii of 0.4, 0.497, 0.53, 0.546 and 0.741 Earth radii, respectively. Due to their size and proximity to Kepler-444, these must be rocky planets, with masses close to that of Mars. For comparison, Mars has a mass of 0.105 Earth masses and a radius of 0.53 Earth radii. |
System with largest total planetary mass | HR 8799 | b, c, d, e | 1 | Four planets having > 5 Jupiter masses each. Nu Ophiuchi b and c have minimum masses of 22.206 and 24.662 Jupiter masses, respectively.[8] They are likely brown dwarfs. |
Multiplanetary system with smallest mean planetary mass | Kepler-444 | b, c, d, e, f | 3 | The planets in the Kepler-444 system have radii of 0.4, 0.497, 0.53, 0.546 and 0.741 Earth radii, respectively. Due to their size and proximity to Kepler-444, these must be rocky planets, with masses close to that of Mars. For comparison, Mars has a mass of 0.105 Earth masses and a radius of 0.53 Earth radii. |
Multiplanetary system with largest mean planetary mass | HR 8799 | b, c, d, e | 1 | Four planets having > 5 Jupiter masses each. Nu Ophiuchi b and c have minimum masses of 22.206 and 24.662 Jupiter masses, respectively.[8] They are likely brown dwarfs. |
Exo-multiplanetary system with smallest range in planetary mass, log scale (smallest proportional difference between the most and least massive planets) | Teegarden's Star | b, c | 1 | Teegarden b and c are estimated to have masses of 1.05 and 1.11 Earth masses, respectively. |
Exo-multiplanetary system with largest range in planetary mass, log scale (largest proportional difference between the most and least massive planets) | Kepler-37 | b, d | 1 | Mercury and Jupiter have a mass ratio of 5750 to 1. Kepler-37 d and b may have a mass ratio between 500 and 1000, and Gliese 676 c and d have a mass ratio of 491. |
See also
editNotes and references
edit- ^ "HEC: Top 10 Exoplanets". University of Puerto Rico at Arecibo. 5 December 2015. Archived from the original on 17 December 2013. Retrieved 1 August 2017.
- ^ Gui, Yuqian; Zang, Weicheng; Zhai, Ruocheng; Ryu, Yoon-Hyun; Udalski, Andrzej; Yang, Hongjing; Han, Cheongho; Mao, Shude; Authors), (Leading; Albrow, Michael D.; Chung, Sun-Ju; Gould, Andrew; Hwang, Kyu-Ha; Jung, Youn Kil; Shin, In-Gu (July 2024). "Systematic KMTNet Planetary Anomaly Search. XII. Complete Sample of 2017 Subprime Field Planets". The Astronomical Journal. 168 (2): 49. Bibcode:2024AJ....168...49G. doi:10.3847/1538-3881/ad4ce5. ISSN 1538-3881.
- ^ a b Shao, Yi-Xuan; Zhou, Ping; Li, Xiang-Dong; Zhang, Bin-Bin; Castro-Tirado, Alberto Javier; Wang, Pei; Li, Di; Zhang, Zeng-Hua; Zhang, Zi-Jian (1 October 2024). "GTC optical/NIR upper limits and NICER X-ray analysis of SGR J1935+2154 for the outburst in 2022". arXiv:2410.00635 [astro-ph.HE].
- ^ a b Kurban, Abdusattar; Zhou, Xia; Wang, Na; Huang, Yong-Feng; Wang, Yu-Bin; Nurmamat, Nurimangul (June 2024). "Repeating X-ray bursts: Interaction between a neutron star and clumps partially disrupted from a planet". Astronomy & Astrophysics. 686: A87. arXiv:2403.13333v1. doi:10.1051/0004-6361/202347828. ISSN 0004-6361.
- ^ "Exoplanet-catalog-Exoplanet exploration-Kepler-1606b".
- ^ Specht, D.; et al. (2023). "Kepler K2Campaign 9 – II. First space-based discovery of an exoplanet using microlensing". Monthly Notices of the Royal Astronomical Society. 520 (4): 6350–6366. arXiv:2203.16959. doi:10.1093/mnras/stad212.
- ^ Kipping, David M.; Cameron, Chris; Hartman, Joel D.; Davenport, James R. A.; Matthews, Jaymie M.; Sasselov, Dimitar; Rowe, Jason; Siverd, Robert J.; Chen, Jingjing; Sandford, Emily; Bakos, Gáspár Á.; Jordán, Andrés; Bayliss, Daniel; Henning, Thomas; Mancini, Luigi (1 March 2017). "No Conclusive Evidence for Transits of Proxima b in MOST Photometry". The Astronomical Journal. 153 (3): 93. arXiv:1609.08718. Bibcode:2017AJ....153...93K. doi:10.3847/1538-3881/153/3/93. ISSN 0004-6256.
- ^ a b c d e f g h i j k l m n o p q r s t u v "Planetary Systems Composite Data". NASA Exoplanet Archive. Retrieved 12 December 2021.
- ^ Gratton, R.; et al. (June 2020). "Searching for the near-infrared counterpart of Proxima c using multi-epoch high-contrast SPHERE data at VLT". Astronomy & Astrophysics. 638: A120. arXiv:2004.06685. Bibcode:2020A&A...638A.120G. doi:10.1051/0004-6361/202037594. S2CID 215754278.
- ^ "NASA, ESA Telescopes Find Evidence for Asteroid Belt Around Vega" (Press release). Whitney Clavin, NASA. 8 January 2013. Retrieved 4 March 2013.
- ^ Hurt, Spencer A.; Quinn, Samuel N.; Latham, David W.; Vanderburg, Andrew; Esquerdo, Gilbert A.; Calkins, Michael L.; Berlind, Perry; Angus, Ruth; Latham, Christian A.; Zhou, George (21 January 2021). "A Decade of Radial-velocity Monitoring of Vega and New Limits on the Presence of Planets". The Astronomical Journal. 161 (4): 157. arXiv:2101.08801. Bibcode:2021AJ....161..157H. doi:10.3847/1538-3881/abdec8. S2CID 231693198.
- ^ Reichert, Katja (25 March 2019). "Precise radial velocities of giant stars XII. Evidence against the proposed planet Aldebaran b". Astronomy & Astrophysics. A22: 625. arXiv:1903.09157. Bibcode:2019A&A...625A..22R. doi:10.1051/0004-6361/201834028. S2CID 85459692.
- ^ Ducati, J. R. (2002), "VizieR Online Data Catalog: Catalogue of Stellar Photometry in Johnson's 11-color system", CDS/ADC Collection of Electronic Catalogues, 2237: 0, Bibcode:2002yCat.2237....0D, doi:10.26093/cds/vizier, VizieR Cat. II/237/colors.
- ^ Aurière, Michel; Konstantinova-Antova, Renada; et al. (August 2014). "Pollux: a stable weak dipolar magnetic field but no planet?". Proceedings of the International Astronomical Union. Magnetic Fields throughout Stellar Evolution. Vol. 302. pp. 359–362. arXiv:1310.6907. Bibcode:2014IAUS..302..359A. doi:10.1017/S1743921314002476.
- ^ Aurière, M.; Petit, P.; et al. (February 2021). "Pollux: A weak dynamo-driven dipolar magnetic field and implications for its probable planet". Astronomy & Astrophysics. 646: A130. arXiv:2101.02016. Bibcode:2021A&A...646A.130A. doi:10.1051/0004-6361/202039573.
- ^ a b Lee, B. -C; Han, I.; Park, M. -G.; Kim, K. -M.; Mkrtichian, D. E. (2012). "Detection of the 128-day radial velocity variations in the supergiant α Persei. Rotational modulations, pulsations, or a planet?". Astronomy and Astrophysics. 543: A37. arXiv:1205.3840. Bibcode:2012A&A...543A..37L. doi:10.1051/0004-6361/201118539. S2CID 118482287.
- ^ Ygouf, Marie; Beichman, Charles; et al. (October 2023). "Searching for Planets Orbiting Fomalhaut with JWST/NIRCam". The Astronomical Journal. 167 (1): 26. arXiv:2310.15028. Bibcode:2024AJ....167...26Y. doi:10.3847/1538-3881/ad08c8.
- ^ González Hernández, J. I.; et al. (October 2024). "A sub-Earth-mass planet orbiting Barnard's star". Astronomy & Astrophysics. 690: A79. arXiv:2410.00569. Bibcode:2024A&A...690A..79G. doi:10.1051/0004-6361/202451311. A79.
{{cite journal}}
: CS1 maint: numeric names: authors list (link) - ^ a b "The Top 20 High Proper Motion - Hipparcos - Cosmos". www.cosmos.esa.int. Retrieved 2 October 2024.
- ^ a b "The Extrasolar Planet Encyclopaedia — Catalog Listing". Extrasolar Planets Encyclopaedia. 11 January 1995. Retrieved 4 May 2019.
- ^ Baig, Sayan (August 2024). "The Ultracool Dwarf Companion catalouge". Zenodo. doi:10.5281/zenodo.13312178.
- ^ "The Extrasolar Planet Encyclopaedia — SWIFT J1756-2508 b". Extrasolar Planets Encyclopaedia. Paris Observatory. Retrieved 20 October 2024.
- ^ Khandelwal, Akanksha; Sharma, Rishikesh; Chakraborty, Abhijit; Chaturvedi, Priyanka; Ulmer-Moll, Solène; Ciardi, David R.; Boyle, Andrew W.; Baliwal, Sanjay; Bieryla, Allyson; Latham, David W.; Prasad, Neelam J. S. S. V.; Nayak, Ashirbad; Lendl, Monika; Mordasini, Christoph (1 April 2023). "Discovery of a massive giant planet with extreme density around the sub-giant star TOI-4603". Astronomy & Astrophysics. 672: L7. arXiv:2303.11841. Bibcode:2023A&A...672L...7K. doi:10.1051/0004-6361/202245608. ISSN 0004-6361.
- ^ Lecavelier des Etangs, A.; Lissauer, Jack J. (June 2022). "The IAU working definition of an exoplanet". New Astronomy Reviews. 94: 101641. arXiv:2203.09520. Bibcode:2022NewAR..9401641L. doi:10.1016/j.newar.2022.101641. IAU website link
- ^ Kirkpatrick, J. Davy; Marocco, Federico; et al. (April 2024). "The Initial Mass Function Based on the Full-sky 20 pc Census of ~3600 Stars and Brown Dwarfs". The Astrophysical Journal Supplement Series. 271 (2): 55. arXiv:2312.03639. Bibcode:2024ApJS..271...55K. doi:10.3847/1538-4365/ad24e2.
- ^ Hinkley, S.; Lacour, S.; et al. (March 2023). "Direct discovery of the inner exoplanet in the HD 206893 system. Evidence for deuterium burning in a planetary-mass companion". Astronomy & Astrophysics. 671: L5. arXiv:2208.04867. Bibcode:2023A&A...671L...5H. doi:10.1051/0004-6361/202244727.
- ^ Baburaj, Aneesh (February 2024). "How big can you make a planet? Spectroscopic characterization of HD 206893B". JWST Proposal. Cycle 3: 5485. Bibcode:2024jwst.prop.5485B.
- ^ Voisin, Guillaume; Cognard, Ismaël; Saillenfest, Melaine; Tauris, Thomas; Wex, Norbert; Guillemot, Lucas; Theureau, Gilles; Freire, P. C. C.; Kramer, Michael (15 November 2024). "Explanation of the exceptionally strong timing noise of PSR J0337+1715 by a circumternary planet and consequences for gravity tests". arXiv:2411.10066 [astro-ph.HE].
- ^ Zhou, Yifan; Herczeg, Gregory J.; Kraus, Adam L.; Metchev, Stanimir; Cruz, Kelle L. (18 February 2014). "Accretion Onto Planetary Mass Companions of Low-Mass Young Stars". The Astrophysical Journal. 783 (1): L17. arXiv:1401.6545. Bibcode:2014ApJ...783L..17Z. doi:10.1088/2041-8205/783/1/L17. ISSN 2041-8205.
- ^ Wang, Jason J.; Ginzburg, Sivan; Ren, Bin; Wallack, Nicole; Gao, Peter; Mawet, Dimitri; Bond, Charlotte Z.; Cetre, Sylvain; Wizinowich, Peter; De Rosa, Robert J.; Ruane, Garreth (18 May 2020). "Keck/NIRC2 L'-Band Imaging of Jovian-Mass Accreting Protoplanets around PDS 70". The Astronomical Journal. 159 (6): 263. arXiv:2004.09597. Bibcode:2020AJ....159..263W. doi:10.3847/1538-3881/ab8aef. hdl:2268/254014. ISSN 1538-3881. S2CID 216035946.
- ^ Fang, Min; Kim, Jinyoung Serena; Pascucci, Ilaria; Apai, Dániel; Manara, Carlo Felice (12 December 2016). "A candidate planetary-mass object with a photoevaporating disk in Orion". The Astrophysical Journal. 833 (2): L16. arXiv:1611.09761. Bibcode:2016ApJ...833L..16F. doi:10.3847/2041-8213/833/2/L16. ISSN 2041-8213.
- ^ Gully-Santiago, Michael; Morley, Caroline V.; Luna, Jessica; MacLeod, Morgan; Oklopčić, Antonija; Ganesh, Aishwarya; Tran, Quang H.; Zhang, Zhoujian; Bowler, Brendan P.; Cochran, William D.; Krolikowski, Daniel M.; Mahadevan, Suvrath; Ninan, Joe P.; Stefánsson, Guđmundur; Vanderburg, Andrew (1 March 2024). "A Large and Variable Leading Tail of Helium in a Hot Saturn Undergoing Runaway Inflation". The Astronomical Journal. 167 (4): 142. arXiv:2307.08959. Bibcode:2024AJ....167..142G. doi:10.3847/1538-3881/ad1ee8. ISSN 0004-6256.
- ^ "Planet SDSS J1228+1040 b". Extrasolar Planets Encyclopaedia. Retrieved 5 August 2019.
- ^ Bailes, M.; Bates, S. D.; Bhalerao, V.; Bhat, N. D. R.; Burgay, M.; Burke-Spolaor, S.; D'Amico, N.; Johnston, S.; Keith, M. J.; Kramer, M.; Kulkarni, S. R.; Levin, L.; Lyne, A. G.; Milia, S.; Possenti, A. (23 September 2011). "Transformation of a Star into a Planet in a Millisecond Pulsar Binary". Science. 333 (6050): 1717–1720. arXiv:1108.5201. Bibcode:2011Sci...333.1717B. doi:10.1126/science.1208890. ISSN 0036-8075. PMID 21868629.
- ^ Khandelwal, Akanksha; Sharma, Rishikesh; Chakraborty, Abhijit; Chaturvedi, Priyanka; Ulmer-Moll, Solène; Ciardi, David R.; Boyle, Andrew W.; Baliwal, Sanjay; Bieryla, Allyson; Latham, David W.; Prasad, Neelam J. S. S. V.; Nayak, Ashirbad; Lendl, Monika; Mordasini, Christoph (14 April 2023). "Discovery of a massive giant planet with extreme density around the sub-giant star TOI-4603". Astronomy & Astrophysics. 672: L7. arXiv:2303.11841. Bibcode:2023A&A...672L...7K. doi:10.1051/0004-6361/202245608. ISSN 0004-6361.
- ^ "Planet TOI-4603 b". NASA Exoplanet Archive. Retrieved 17 November 2023.
- ^ Johns, Daniel; Marti, Connor; Huff, Madison; McCann, Jacob; Wittenmyer, Robert A.; Horner, Jonathan; Wright, Duncan J. (16 November 2018). "Revised Exoplanet Radii and Habitability Using Gaia Data Release 2". The Astrophysical Journal Supplement Series. 239 (1): 14. arXiv:1808.04533. Bibcode:2018ApJS..239...14J. doi:10.3847/1538-4365/aae5fb. ISSN 1538-4365.
- ^ Marcy, Geoffrey W.; Isaacson, Howard; Howard, Andrew W.; Rowe, Jason F.; Jenkins, Jon M.; Bryson, Stephen T.; Latham, David W.; Howell, Steve B.; Gautier III, Thomas N.; Batalha, Natalie M.; Rogers, Leslie A. (13 January 2014). "Masses, Radii, and Orbits of Small Kepler Planets: The Transition from Gaseous to Rocky Planets". The Astrophysical Journal Supplement Series. 210 (2): 20. arXiv:1401.4195. Bibcode:2014ApJS..210...20M. doi:10.1088/0067-0049/210/2/20. hdl:1721.1/92945. ISSN 0067-0049. S2CID 10760418.
- ^ Very Low-Density Planets around Kepler-51 Revealed with Transit Timing Variations and an Anomaly Similar to a Planet-Planet Eclipse Event: Kento Masuda
- ^ a b Libby-Roberts, Jessica E.; Berta-Thompson, Zachory K.; Désert, Jean-Michel; Masuda, Kento; Morley, Caroline V.; Lopez, Eric D.; Deck, Katherine M.; Fabrycky, Daniel; Fortney, Jonathan J.; Line, Michael R.; Sanchis-Ojeda, Roberto; Winn, Joshua N. (1 February 2020). "The Featureless Transmission Spectra of Two Super-puff Planets". The Astronomical Journal. 159 (2): 57. arXiv:1910.12988. Bibcode:2020AJ....159...57L. doi:10.3847/1538-3881/ab5d36. ISSN 0004-6256.
- ^ Asmelash, Leah (16 May 2024). "Unusual giant planet as fluffy as cotton candy spotted by astronomers". edition.cnn.com. CNN. Retrieved 19 May 2024.
- ^ Morris, Evan C.; Wang, Jason J.; Hsu, Chih-Chun; Ruffio, Jean-Baptiste; Xuan, Jerry W.; Delorme, Jacques-Robert; Hood, Callie; Bryan, Marta L.; Martin, Emily C. (May 2024), kappa And b is a fast rotator from KPIC High Resolution Spectroscopy, arXiv:2405.13125
- ^ a b Charpinet, S.; et al. (21 December 2011). "A compact system of small planets around a former red-giant star". Nature. 480 (7378): 496–499. Bibcode:2011Natur.480..496C. doi:10.1038/nature10631. ISSN 1476-4687. PMID 22193103. S2CID 2213885.
- ^ Neuhäuser, R.; Mugrauer, M.; Seifahrt, A.; Schmidt, T. O. B.; Vogt, N. (1 June 2008). "Astrometric and photometric monitoring of GQ Lupi and its sub-stellar companion". Astronomy & Astrophysics. 484 (1): 281–291. arXiv:0801.2287. Bibcode:2008A&A...484..281N. doi:10.1051/0004-6361:20078493. ISSN 0004-6361.
- ^ Is this a Brown Dwarf or an Exoplanet? New Young Sub-stellar Companion Imaged with the VLT Archived 2008-05-07 at the Wayback Machine, ESO Press Release 09/05, April 7, 2005.
- ^ Beaulieu, J. -P.; Bennett, D. P.; Fouqué, P.; Williams, A.; Dominik, M.; Jørgensen, U. G.; Kubas, D.; Cassan, A.; Coutures, C.; Greenhill, J.; Hill, K.; Menzies, J.; Sackett, P. D.; Albrow, M.; Brillant, S. (1 January 2006). "Discovery of a cool planet of 5.5 Earth masses through gravitational microlensing". Nature. 439 (7075): 437–440. arXiv:astro-ph/0601563. Bibcode:2006Natur.439..437B. doi:10.1038/nature04441. ISSN 0028-0836. PMID 16437108.
- ^ Damasso, Mario; Del Sordo, Fabio; Anglada-Escudé, Guillem; Giacobbe, Paolo; Sozzetti, Alessandro; Morbidelli, Alessandro; Pojmanski, Grzegorz; Barbato, Domenico; Butler, R. Paul; Jones, Hugh R. A.; Hambsch, Franz-Josef; Jenkins, James S.; López-González, María José; Morales, Nicolás; Peña Rojas, Pablo A. (1 January 2020). "A low-mass planet candidate orbiting Proxima Centauri at a distance of 1.5 AU". Science Advances. 6 (3): eaax7467. Bibcode:2020SciA....6.7467D. doi:10.1126/sciadv.aax7467. PMC 6962037. PMID 31998838.
- ^ Hoyer, S.; Jenkins, J. S.; Parmentier, V.; Deleuil, M.; Scandariato, G.; Wilson, T. G.; Díaz, M. R.; Crossfield, I. J. M.; Dragomir, D.; Kataria, T.; Lendl, M.; Ramirez, R.; Peña Rojas, P. A.; Vinés, J. I. (10 July 2023). "The extremely high albedo of LTT 9779 b revealed by CHEOPS". Astronomy & Astrophysics. 675: A81. doi:10.1051/0004-6361/202346117. Retrieved 12 July 2023.
- ^ David M. Kipping; et al. (2011). "Detection of visible light from the darkest world". Monthly Notices of the Royal Astronomical Society. 417 (1): L88–L92. arXiv:1108.2297. Bibcode:2011MNRAS.417L..88K. doi:10.1111/j.1745-3933.2011.01127.x. S2CID 119287494.
- ^ Xuan, Jerry W.; Hsu, Chih-Chun; Finnerty, Luke; Wang, Jason; Ruffio, Jean-Baptiste; Zhang, Yapeng; Knutson, Heather A.; Mawet, Dimitri; Mamajek, Eric E.; Inglis, Julie; Wallack, Nicole L.; Bryan, Marta L.; Blake, Geoffrey A.; Mollière, Paul; Hejazi, Neda (1 July 2024). "Are These Planets or Brown Dwarfs? Broadly Solar Compositions from High-resolution Atmospheric Retrievals of ~10–30 M Jup Companions". The Astrophysical Journal. 970 (1): 71. arXiv:2405.13128. Bibcode:2024ApJ...970...71X. doi:10.3847/1538-4357/ad4796. ISSN 0004-637X.
- ^ Fang, Min; Kim, Jinyoung Serena; Pascucci, Ilaria; Apai, Dániel; Manara, Carlo Felice (12 December 2016). "A candidate planetary-mass object with a photoevaporating disk in Orion". The Astrophysical Journal. 833 (2): L16. arXiv:1611.09761. Bibcode:2016ApJ...833L..16F. doi:10.3847/2041-8213/833/2/L16. ISSN 2041-8213. S2CID 119511524.
- ^ "The Extrasolar Planet Encyclopaedia — Proplyd 133-353". Extrasolar Planets Encyclopaedia. Retrieved 30 March 2019.
- ^ a b Lecavelier des Etangs, A.; Lissauer, Jack J. (1 June 2022). "The IAU working definition of an exoplanet". New Astronomy Reviews. 94: 101641. arXiv:2203.09520. Bibcode:2022NewAR..9401641L. doi:10.1016/j.newar.2022.101641.
- ^ Todorov, K.; Luhman, K. L.; McLeod, K. K. (1 May 2010). "Discovery of a Planetary-Mass Companion to a Brown Dwarf in Taurus". The Astrophysical Journal. 714 (1): L84–L88. arXiv:1004.0539. Bibcode:2010ApJ...714L..84T. doi:10.1088/2041-8205/714/1/L84. ISSN 2041-8205.
- ^ Barber, Madyson G.; Mann, Andrew W.; Vanderburg, Andrew; Krolikowski, Daniel; Kraus, Adam; Ansdell, Megan; Pearce, Logan; Mace, Gregory N.; Andrews, Sean M.; Boyle, Andrew W.; Collins, Karen A.; De Furio, Matthew; Dragomir, Diana; Espaillat, Catherine; Feinstein, Adina D. (November 2024). "A giant planet transiting a 3-Myr protostar with a misaligned disk". Nature. 635 (8039): 574–577. doi:10.1038/s41586-024-08123-3. ISSN 1476-4687.
- ^ Manick, R.; Sousa, A. P.; Bouvier, J.; Almenara, J. M.; Rebull, L.; Bayo, A.; Carmona, A.; Martioli, E.; Venuti, L.; Pantolmos, G.; Kóspál, á.; Zanni, C.; Bonfils, X.; Moutou, C.; Delfosse, X. (June 2024). "Long-period modulation of the classical T Tauri star CI Tau: Evidence for an eccentric close-in massive planet at 0.17 au". Astronomy & Astrophysics. 686: A249. arXiv:2403.03706. Bibcode:2024A&A...686A.249M. doi:10.1051/0004-6361/202348258. ISSN 0004-6361.
- ^ Nielsen, L. D.; Brahm, R.; Bouchy, F.; Espinoza, N.; Turner, O.; Rappaport, S.; Pearce, L.; Ricker, G.; Vanderspek, R.; Latham, D. W.; Seager, S.; Winn, J. N.; Jenkins, J. M.; Acton, J. S.; Bakos, G. (July 2020). "Three short-period Jupiters from TESS: HIP 65Ab, TOI-157b, and TOI-169b". Astronomy & Astrophysics. 639: A76. arXiv:2003.05932. Bibcode:2020A&A...639A..76N. doi:10.1051/0004-6361/202037941. ISSN 0004-6361.
- ^ Lacki, Brian C.; Brzycki, Bryan; Croft, Steve; Czech, Daniel; DeBoer, David; DeMarines, Julia; Gajjar, Vishal; Isaacson, Howard; Lebofsky, Matt; MacMahon, David H. E.; Price, Danny C.; Sheikh, Sofia Z.; Siemion, Andrew P. V.; Drew, Jamie; Worden, S. Pete (1 December 2021). "One of Everything: The Breakthrough Listen Exotica Catalog". The Astrophysical Journal Supplement Series. 257 (2): 42. arXiv:2006.11304. Bibcode:2021ApJS..257...42L. doi:10.3847/1538-4365/ac168a. ISSN 0067-0049.
- ^ "GJ 900 b - NASA Science". science.nasa.gov. Retrieved 20 June 2024.
- ^ a b "The Extrasolar Planet Encyclopaedia — SDSS J1730+5545 b". Extrasolar Planets Encyclopaedia. Paris Observatory. Retrieved 20 October 2024.
- ^ "The Extrasolar Planet Encyclopaedia — K2-137 b.". Extrasolar Planets Encyclopaedia. 2018.
- ^ a b c d Rothermich, Austin; Faherty, Jacqueline K.; Bardalez-Gagliuffi, Daniella; Schneider, Adam C.; Kirkpatrick, J. Davy; Meisner, Aaron M.; Burgasser, Adam J.; Kuchner, Marc; Allers, Katelyn; Gagné, Jonathan; Caselden, Dan; Calamari, Emily; Popinchalk, Mark; Suárez, Genaro; Gerasimov, Roman (1 June 2024). "89 New Ultracool Dwarf Comoving Companions Identified with the Backyard Worlds: Planet 9 Citizen Science Project". The Astronomical Journal. 167 (6): 253. arXiv:2403.04592. Bibcode:2024AJ....167..253R. doi:10.3847/1538-3881/ad324e. ISSN 0004-6256.
- ^ Pramono, T. H.; Kenworthy, M. A.; Boekel, R. van (1 August 2024). "ASASSN-21js: A multi-year transit of a ringed disc". Astronomy & Astrophysics. 688: L11. arXiv:2408.06744. Bibcode:2024A&A...688L..11P. doi:10.1051/0004-6361/202450288. ISSN 0004-6361.
- ^ Feng, Fabo; Butler, R. Paul; Vogt, Steven S.; Clement, Matthew S.; Tinney, C. G.; Cui, Kaiming; Aizawa, Masataka; Jones, Hugh R. A.; Bailey, J.; Burt, Jennifer; Carter, B. D.; Crane, Jeffrey D.; Flammini Dotti, Francesco; Holden, Bradford; Ma, Bo (1 September 2022). "3D Selection of 167 Substellar Companions to Nearby Stars". The Astrophysical Journal Supplement Series. 262 (1): 21. arXiv:2208.12720. Bibcode:2022ApJS..262...21F. doi:10.3847/1538-4365/ac7e57. ISSN 0067-0049.
- ^ a b c d e f g h "Planetary Systems". exoplanetarchive.ipac.caltech.edu. Retrieved 15 January 2024.
- ^ Dalal, S.; Kiefer, F.; Hébrard, G.; Sahlmann, J.; Sousa, S. G.; Forveille, T.; Delfosse, X.; Arnold, L.; Astudillo-Defru, N.; Bonfils, X.; Boisse, I.; Bouchy, F.; Bourrier, V.; Brugger, B.; Cortés-Zuleta, P. (1 July 2021). "The SOPHIE search for northern extrasolar planets. XVII. A wealth of new objects: Six cool Jupiters, three brown dwarfs, and 16 low-mass binary stars". Astronomy and Astrophysics. 651: A11. arXiv:2105.09741. Bibcode:2021A&A...651A..11D. doi:10.1051/0004-6361/202140712. ISSN 0004-6361.
- ^ De Rosa, Robert J.; Kalas, Paul (February 2019). "A Near-coplanar Stellar Flyby of the Planet Host Star HD 106906". The Astronomical Journal. 157 (3). 125. arXiv:1902.10220. Bibcode:2019AJ....157..125D. doi:10.3847/1538-3881/ab0109. S2CID 119191779.
- ^ Orosz, J.; Welsh, W.; Carter, J.; Fabrycky, D.; Cochran, W.; et al. (2012). "Kepler-47: A Transiting Circumbinary Multi-Planet System". Science. 337 (6101): 1511–4. arXiv:1208.5489. Bibcode:2012Sci...337.1511O. doi:10.1126/science.1228380. PMID 22933522. S2CID 44970411.
- ^ Laurance R. Doyle; Joshua A. Carter; Daniel C. Fabrycky; Robert W. Slawson; Steve B. Howell; Joshua N. Winn; Jerome A. Orosz; Andrej Prsa; William F. Welsh; et al. (2011). "Kepler-16: A Transiting Circumbinary Planet". Science. 333 (6049): 1602–1606. arXiv:1109.3432. Bibcode:2011Sci...333.1602D. doi:10.1126/science.1210923. PMID 21921192. S2CID 206536332.
- ^ a b c d Kuzuhara, M.; Tamura, M.; Ishii, M.; Kudo, T.; Nishiyama, S.; Kandori, R. (1 April 2011). "The Widest-Separation Substellar Companion Candidate to a Binary T Tauri Star". The Astronomical Journal. 141 (4): 119. Bibcode:2011AJ....141..119K. doi:10.1088/0004-6256/141/4/119. ISSN 0004-6256.
- ^ Currie, Thayne; Daemgen, Sebastian; Debes, John; Lafreniere, David; Itoh, Yoichi; Jayawardhana, Ray; Ratzka, Thorsten; Correia, Serge (2014). "Direct Imaging and Spectroscopy of a Candidate Companion Below/Near the Deuterium-Burning Limit In The Young Binary Star System, ROXs 42B". The Astrophysical Journal Letters. 780 (2): 30. arXiv:1310.4825. Bibcode:2014ApJ...780L..30C. doi:10.1088/2041-8205/780/2/L30. S2CID 118464822.
- ^ Gaarn, Josefine; Burningham, Ben; Faherty, Jacqueline K; Visscher, Channon; Marley, Mark S; Gonzales, Eileen C; Calamari, Emily; Bardalez Gagliuffi, Daniella; Lupu, Roxana; Freedman, Richard (31 March 2023). "The puzzle of the formation of T8 dwarf Ross 458c". Monthly Notices of the Royal Astronomical Society. 521 (4): 5761–5775. arXiv:2303.16863. Bibcode:2023MNRAS.521.5761G. doi:10.1093/mnras/stad753. ISSN 0035-8711.
- ^ Itoh, Yoichi; Hayashi, Masahiko; Tamura, Motohide; Tsuji, Takashi; Oasa, Yumiko; Fukagawa, Misato; Hayashi, Saeko S.; Naoi, Takahiro; Ishii, Miki; Mayama, Satoshi; Morino, Jun-ichi; Yamashita, Takuya; Pyo, Tae-Soo; Nishikawa, Takayuki; Usuda, Tomonori (20 February 2005). "A Young Brown Dwarf Companion to DH Tauri". The Astrophysical Journal. 620 (2): 984–993. arXiv:astro-ph/0411177. Bibcode:2005ApJ...620..984I. doi:10.1086/427086. ISSN 0004-637X.
- ^ Kraus, Adam; J. Ireland, Michael; A. Cieza, Lucas; Hinkley, Sasha; J. Dupuy, Trent; P. Bowler, Brendan; C. Liu, Michael (2 January 2014). "Three Wide Planetary-Mass Companions to FW Tau, ROXs 12, and ROXs 42B". The Astrophysical Journal. 781 (1): 1311. arXiv:1311.7664. Bibcode:2014ApJ...781...20K. doi:10.1088/0004-637X/781/1/20. S2CID 41086512.
- ^ Mora, Ariel; Wu, Ya-Lin; Bowler, Brendan P.; Sheehan, Patrick (1 January 2020). "Measuring the Mass of the Faint Companion to FW Tau with ALMA". Research Notes of the AAS. 4 (1): 9. Bibcode:2020RNAAS...4....9M. doi:10.3847/2515-5172/ab6852. ISSN 2515-5172.
- ^ Barnes, John R.; Haswell, Carole A.; Staab, Daniel; Anglada-Escudé, Guillem; Fossati, Luca; Doherty, James P. J.; Cooper, Joseph; Jenkins, James S.; Díaz, Matías R.; Soto, Maritza G.; Peña Rojas, Pablo A. (2019). "An ablating 2.6-M🜨 planet in an eccentric binary from the Dispersed Matter Planet Project". Nature Astronomy. 4 (4): 419–426. arXiv:1912.10793. doi:10.1038/s41550-019-0972-z. S2CID 209444780.
- ^ "Multiplicity of stars with planets in the solar neighbourhood" (PDF). aanda.org. March 2024.
- ^ Ramm, D. J.; et al. (2016). "The conjectured S-type retrograde planet in ν Octantis: more evidence including four years of iodine-cell radial velocities". Monthly Notices of the Royal Astronomical Society. 460 (4): 3706–3719. arXiv:1605.06720. Bibcode:2016MNRAS.460.3706R. doi:10.1093/mnras/stw1106.
- ^ Errico, Adriana; Wittenmyer, Robert A.; Horner, Jonathan; Li, Zhexing; Brandt, G. Mirek; Kane, Stephen R.; Fetherolf, Tara; Holt, Timothy R.; Carter, Brad; Clark, Jake T.; Butler, R. P.; Tinney, C. G.; Ballard, Sarah; Bowler, Brendan P.; Kielkopf, John; Liu, Huigen; Plavchan, Peter P.; Shporer, Avi; Zhang, Hui; Wright, Duncan J.; Addison, Brett C.; Mengel, Matthew W.; Okumura, Jack (2022), "HD 83443c: A Highly Eccentric Giant Planet on a 22 yr Orbit", The Astronomical Journal, 163 (6): 273, arXiv:2204.05711, Bibcode:2022AJ....163..273E, doi:10.3847/1538-3881/ac6589, S2CID 248118529
- ^ a b Horner, J.; Wittenmyer, R. A.; Hinse, T. C.; Marshall, J. P. (2014). "A dynamical investigation of the proposed BD +20 2457 system". Monthly Notices of the Royal Astronomical Society. 439 (1): 1176. arXiv:1401.2793. Bibcode:2014MNRAS.439.1176H. doi:10.1093/mnras/stu081.
- ^ Jones, M. I.; Jenkins, J. S. (2014). "No evidence of the planet orbiting the extremely metal-poor extragalactic star HIP 13044". Astronomy and Astrophysics. 562: A129. arXiv:1401.0517. Bibcode:2014A&A...562A.129J. doi:10.1051/0004-6361/201322132. S2CID 55365608.
- ^ Reggiani, Henrique; Ji, Alexander P.; Schlaufman, Kevin C.; Frebel, Anna; Necib, Lina; Nelson, Tyler; Hawkins, Keith; Galarza, Jhon Yana (2022). "The Chemical Composition of Extreme-velocity Stars". The Astronomical Journal. 163 (6): 252. arXiv:2203.16364. Bibcode:2022AJ....163..252R. doi:10.3847/1538-3881/ac62d9. S2CID 247793231.
- ^ Hansen, T. T.; Andersen, J.; Nordström, B.; Beers, T. C.; Yoon, J.; Buchhave, L. A. (2015), "The role of binaries in the enrichment of the early Galactic halo. I. r-process-enhanced metal-poor stars", Astronomy & Astrophysics, 583: A49, arXiv:1509.05344, Bibcode:2015A&A...583A..49H, doi:10.1051/0004-6361/201526812
- ^ "Notes for mu2 scorpii". Extrasolar Planets Encyclopaedia. Retrieved 6 May 2022.
- ^ "Notes for planet M51-ULS-1b". Extrasolar Planets Encyclopaedia. Retrieved 18 July 2021.
- ^ Lei, Wei-Hua; Yuan, Qiang; Zhang, Bing; Wang, Daniel (December 2015). "Igr J12580+0134: The First Tidal Disruption Event with an Off-Beam Relativistic Jet". The Astrophysical Journal. 816 (1): 20. arXiv:1511.01206. doi:10.3847/0004-637X/816/1/20. ISSN 0004-637X.
- ^ Wenz, John (29 November 2023). "Astronomers discover disk around star in another galaxy". Astronomy Magazine.
- ^ a b Fedele; et al. (2005). "The K -Band Intensity Profile of R Leonis Probed by VLTI/VINCI". Astronomy & Astrophysics. 431 (3): 1019–1026. arXiv:astro-ph/0411133. Bibcode:2005A&A...431.1019F. doi:10.1051/0004-6361:20042013. S2CID 15500217.
- ^ a b Paladini, C.; Sacuto, S.; Klotz, D.; Ohnaka, K.; Wittkowski, M.; Nowotny, W.; Jorissen, A.; Hron, J. (1 August 2012). "Detection of an asymmetry in the envelope of the carbon Mira R Fornacis using VLTI/MIDI". Astronomy & Astrophysics. 544: L5. arXiv:1207.3910. Bibcode:2012A&A...544L...5P. doi:10.1051/0004-6361/201219831. ISSN 0004-6361.
- ^ "The Extrasolar Planet Encyclopaedia — R For b". Extrasolar Planets Encyclopaedia. Paris Observatory. Retrieved 19 July 2024.
- ^ a b Kastner, J. H.; Buchanan, C. L.; Sargent, B.; Forrest, W. J. (2006). "SpitzerSpectroscopy of Dusty Disks around B\e] Hypergiants in the Large Magellanic Cloud". The Astrophysical Journal. 638 (1): L29–L32. Bibcode:2006ApJ...638L..29K. doi:10.1086/500804.
- ^ Agol, Eric; Dorn, Caroline; Grimm, Simon L.; Turbet, Martin; Ducrot, Elsa; Delrez, Laetitia; Gillon, Michael; Demory, Brice-Olivier; Burdanov, Artem (14 January 2021), "Refining the transit timing and photometric analysis of TRAPPIST-1: Masses, radii, densities, dynamics, and ephemerides", The Planetary Science Journal, 2 (1): 1, arXiv:2010.01074, Bibcode:2021PSJ.....2....1A, doi:10.3847/PSJ/abd022
- ^ Linsky, Jeffrey L.; Wood, Brian E.; Brown, Alexander; Giampapa, Mark S.; Ambruster, Carol (December 1995). "Stellar Activity at the End of the Main Sequence: GHRS Observations of the M8 Ve Star VB 10". The Astrophysical Journal. 455: 670. Bibcode:1995ApJ...455..670L. doi:10.1086/176614. hdl:2060/19970022983. ISSN 0004-637X.
- ^ Yue, Y. L.; Cui, X. H.; Xu, R. X. (1 October 2006). "Is PSR B0943+10 a low-mass quark star?". The Astrophysical Journal. 649 (2): L95–L98. arXiv:astro-ph/0603468. Bibcode:2006ApJ...649L..95Y. doi:10.1086/508421. ISSN 0004-637X. S2CID 18183996.
- ^ McDonald, I.; Zijlstra, A. A.; Boyer, M. L. (1 November 2012). "Fundamental parameters and infrared excesses of Hipparcos stars". Monthly Notices of the Royal Astronomical Society. 427 (1): 343–357. arXiv:1208.2037. Bibcode:2012MNRAS.427..343M. doi:10.1111/j.1365-2966.2012.21873.x. ISSN 0035-8711. Alpha Persei's database entry at VizieR.
- ^ Niedzielski, A.; Nowak, G.; Adamów, M.; Wolszczan, A. (December 2009). "Substellar-mass companions to the K-dwarf BD +14 4559 and the K-giants HD 240210 and BD +20 2457". The Astrophysical Journal. 707 (1): 768–777. arXiv:0906.1804. Bibcode:2009ApJ...707..768N. doi:10.1088/0004-637X/707/1/768. ISSN 0004-637X.
- ^ Agol, Eric; Dorn, Caroline; Grimm, Simon L.; Turbet, Martin; Ducrot, Elsa; Delrez, Laetitia; Gillon, Michaël; Demory, Brice-Olivier; Burdanov, Artem; Barkaoui, Khalid; Benkhaldoun, Zouhair; Bolmont, Emeline; Burgasser, Adam; Carey, Sean; de Wit, Julien (1 February 2021). "Refining the Transit-timing and Photometric Analysis of TRAPPIST-1: Masses, Radii, Densities, Dynamics, and Ephemerides". The Planetary Science Journal. 2 (1): 1. arXiv:2010.01074. Bibcode:2021PSJ.....2....1A. doi:10.3847/PSJ/abd022. ISSN 2632-3338.
- ^ a b Zhang, Bing; Sanwal, Divas; Pavlov, George G. (10 May 2005). "An XMM-Newton Observation of the Drifting Pulsar B0943+10". The Astrophysical Journal. 624 (2): L109–L112. arXiv:astro-ph/0503423. Bibcode:2005ApJ...624L.109Z. doi:10.1086/430522. ISSN 0004-637X.
- ^ Stassun, Keivan G.; Oelkers, Ryan J.; Paegert, Martin; Torres, Guillermo; Pepper, Joshua; De Lee, Nathan; Collins, Kevin; Latham, David W.; Muirhead, Philip S.; Chittidi, Jay; Rojas-Ayala, Bárbara; Fleming, Scott W.; Rose, Mark E.; Tenenbaum, Peter; Ting, Eric B. (1 October 2019). "The Revised TESS Input Catalog and Candidate Target List". The Astronomical Journal. 158 (4): 138. arXiv:1905.10694. Bibcode:2019AJ....158..138S. doi:10.3847/1538-3881/ab3467. ISSN 0004-6256.
- ^ Pulley, D.; Sharp, I. D.; Mallett, J.; von Harrach, S. (August 2022). "Eclipse timing variations in post-common envelope binaries: Are they a reliable indicator of circumbinary companions?". Monthly Notices of the Royal Astronomical Society. 514 (4): 5725–5738. arXiv:2206.06919. Bibcode:2022MNRAS.514.5725P. doi:10.1093/mnras/stac1676.
- ^ Janson, Markus; Gratton, Raffaele; Rodet, Laetitia; Vigan, Arthur; Bonnefoy, Mickaël; Delorme, Philippe; Mamajek, Eric E.; Reffert, Sabine; Stock, Lukas; Marleau, Gabriel-Dominique; Langlois, Maud; Chauvin, Gaël; Desidera, Silvano; Ringqvist, Simon; Mayer, Lucio; Viswanath, Gayathri; Squicciarini, Vito; Meyer, Michael R.; Samland, Matthias; Petrus, Simon; Helled, Ravit; Kenworthy, Matthew A.; Quanz, Sascha P.; Biller, Beth; Henning, Thomas; Mesa, Dino; Engler, Natalia; Carson, Joseph C. (2021). "A wide-orbit giant planet in the high-mass b Centauri binary system". Nature. 600 (7888): 231–234. arXiv:2112.04833. Bibcode:2021Natur.600..231J. doi:10.1038/s41586-021-04124-8. PMID 34880428. S2CID 245005994.
- ^ "V921 Sco b". Extrasolar Planets Encyclopaedia. Retrieved 18 July 2021.
- ^ Dietrich, Jeremy; Apai, Dániel (27 October 2020). "An Integrated Analysis with Predictions on the Architecture of the tau Ceti Planetary System, Including a Habitable Zone Planet". The Astronomical Journal. 161: 17. arXiv:2010.14675. doi:10.3847/1538-3881/abc560. S2CID 225094415.
- ^ Feng, F.; Tuomi, M.; Jones, H. R. A.; Barnes, J.; Anglada-Escudé, G.; Vogt, S. S.; Butler, R. P. (5 September 2017). "Color Difference Makes a Difference: Four Planet Candidates around τ Ceti". The Astronomical Journal. 154 (4): 135. arXiv:1708.02051. Bibcode:2017AJ....154..135F. doi:10.3847/1538-3881/aa83b4. ISSN 0004-6256.
- ^ Tuomi, Mikko (6 April 2012). "Evidence for 9 planets in the 10180 system". Astronomy & Astrophysics. 543: A52. arXiv:1204.1254. Bibcode:2012A&A...543A..52T. doi:10.1051/0004-6361/201118518. S2CID 15876919.
- ^ "NASA telescope reveals largest batch of Earth-size, habitable-zone planets around single star". Exoplanet Exploration: Planets Beyond our Solar System. nasa.gov. 21 February 2017. Retrieved 14 December 2017.
- ^ Kiefer, F.; et al. (January 2021). "Determining the true mass of radial-velocity exoplanets with Gaia. Nine planet candidates in the brown dwarf or stellar regime and 27 confirmed planets". Astronomy & Astrophysics. 645 A7. arXiv:2009.14164. Bibcode:2021A&A...645A...7K. doi:10.1051/0004-6361/202039168. S2CID 221995447.
- ^ "Astronomers Examine Ezekiel-like 'Wheel in a Wheel' in Binary System GG Tauri-A". Sci-News.com. 30 October 2014. Retrieved 10 February 2017.
- ^ Gamma Leonis is mentioned to have a slightly higher magnitude (1.99), but it is the combined magnitude of the system and not of the planet-hosting star. The true apparent magnitude is 2.37.
- ^ The deuterium burning limit also depends on the metallicity and abundance of helium. Metal-rich planets, for example, need a lower mass to fuse deuterium.
- ^ Based on the estimated temperature and luminosity.
- ^ This is the calculated equilibrium temperature, assuming an albedo of 0.3
- ^ Assuming a circular orbit and using the Kepler's Third law
- ^ Determined using angular diameter and distance.
0.008 milliarcseconds * 680 pc = diameter of 5.44 au. - ^ A normal star is a star that is past its protostar period, in its main fusion period, before becoming a degenerate star, black hole, or post-stellar nebula, and is not a brown dwarf
External links
edit- WiredScience, Top 5 Most Extreme Exoplanets, Clara Moskowitz, 21 January 2009