Reciprocal distribution

(Redirected from Log-uniform distribution)

In probability and statistics, the reciprocal distribution, also known as the log-uniform distribution, is a continuous probability distribution. It is characterised by its probability density function, within the support of the distribution, being proportional to the reciprocal of the variable.

Reciprocal
Probability density function
Probability density function
Cumulative distribution function
Cumulative distribution function
Parameters
Support
PDF
CDF
Mean
Median
Variance

The reciprocal distribution is an example of an inverse distribution, and the reciprocal (inverse) of a random variable with a reciprocal distribution itself has a reciprocal distribution.

Definition

edit

The probability density function (pdf) of the reciprocal distribution is

 

Here,   and   are the parameters of the distribution, which are the lower and upper bounds of the support, and   is the natural log. The cumulative distribution function is

 

Characterization

edit

Relationship between the log-uniform and the uniform distribution

edit
 
Histogram and log-histogram of random deviates from the reciprocal distribution

A positive random variable X is log-uniformly distributed if the logarithm of X is uniform distributed,

 

This relationship is true regardless of the base of the logarithmic or exponential function. If   is uniform distributed, then so is  , for any two positive numbers  . Likewise, if   is log-uniform distributed, then so is  , where  .

Applications

edit

The reciprocal distribution is of considerable importance in numerical analysis, because a computer’s arithmetic operations transform mantissas with initial arbitrary distributions into the reciprocal distribution as a limiting distribution.[1]

References

edit
  1. ^ Hamming R. W. (1970) "On the distribution of numbers", The Bell System Technical Journal 49(8) 1609–1625