Miniature Exoplanet Radial Velocity Array

The MINiature Exoplanet Radial Velocity Array (MINERVA) is a ground-based robotic dedicated exoplanet observatory. The facility is an array of small-aperture robotic telescopes outfitted for both photometry and high-resolution Doppler spectroscopy located at the U.S. Fred Lawrence Whipple Observatory at Mt. Hopkins, Arizona.[1][2][3][4] The project's principal investigator is the American astronomer Jason Eastman.[1] The telescopes were manufactured by PlaneWave Instruments.

Miniature Exoplanet Radial Velocity Array
One of the individual telescopes of the Minerva project
Alternative namesMINiature Exoplanet Radial Velocity Array Edit this at Wikidata
Part ofFred Lawrence Whipple Observatory Edit this on Wikidata
Location(s)Mount Hopkins, Arizona
Coordinates31°41′18″N 110°53′07″W / 31.6884°N 110.8854°W / 31.6884; -110.8854 Edit this at Wikidata
Telescope styleastronomical survey
optical telescope Edit this on Wikidata
Websitewww.cfa.harvard.edu/minerva/ Edit this at Wikidata
Miniature Exoplanet Radial Velocity Array is located in the United States
Miniature Exoplanet Radial Velocity Array
Location of Miniature Exoplanet Radial Velocity Array
  Related media on Commons
A diagram of one of the project's enclosures with two telescopes

Science objectives

edit

The primary science goal of MINERVA is to discover Earth-like planets in close-in (less than 50-day) orbits around nearby stars, and super-Earths (3-15 times the mass of Earth) in the habitable zones of the closest Sun-like stars. The secondary goal is to look for transits (eclipses) of known and newly discovered extrasolar planets. The unique design of the MINERVA observatory allows the pursuit of both goals simultaneously.

Specifications and status

edit
  • Telescopes: Four PlaneWave CDK700, 0.7m telescopes within 2 custom telescope enclosures designed by LCOGT engineers. One MINERVA-Red telescope
  • Cameras: 2k × 2k back illuminated CCD with 15 μm pixels offering > 20’ f.o.v.
  • Spectrograph: Stabilized, R = 75,000 echelle spectrograph with iodine cell for precise radial velocimetry designed by KiwiStar Optics (a business unit of Callaghan Innovation; a New Zealand government-owned Crown entity).
  • Status: Full photometric science operations began in May 2015 at FLWO. The spectrograph was installed Dec 2015.

MINERVA-Red

edit

MINERVA-Red is an echelle spectrograph optimized for the 'deep red', between 800 nm and 900 nm (where M-dwarfs are brightest) with a robotic 0.7 meter telescope. It uses a Fabry-Perot etalon and U/Ne lamp for wavelength calibration.[5][6]

See also

edit

Other exoplanet search projects

edit

References

edit
  1. ^ a b "A dedicated Exoplanet Oservatory". Harvard. Retrieved 3 February 2016.
  2. ^ Gudmundur Stefansson (26 December 2014). "MINERVA: MINiature Exoplanet Radial Velocity Array". Astrobites. Retrieved 3 February 2016.
  3. ^ Kristina Hogstrom (16 August 2013). "MINERVA: Using Small, Fully Robotic Telescopes to Search for Habitable-Zone Exoplanets". NASA. Retrieved 3 February 2016.
  4. ^ "Earth-hunting, guerilla style". Planetquest JPL/NASA. 6 September 2012. Retrieved 3 February 2016.
  5. ^ Sliski, David; Blake, Cullen; Johnson, John A.; Plavchan, Peter; Wittenmyer, Robert A.; Eastman, Jason D.; Barnes, Stuart; Baker, Ashley (2017). "MINERVA-Red: A telescope dedicated to the discovery of planets orbiting the nearest low-mass stars". American Astronomical Society Meeting Abstracts #229. 229: 146.09. Bibcode:2017AAS...22914609S. MINERVA-Red: A telescope dedicated to the discovery of planets orbiting the nearest low-mass stars
  6. ^ "MINERVA-Red: An Intensive Survey for Planets Orbiting the Nearest Low-mass Stars to the Sun - Videos | Institute for Advanced Study". 7 October 2015.
edit