The F engine family from Mazda is a mid-sized inline-four piston engine with iron block, alloy head and belt-driven SOHC and DOHC configurations. Introduced in 1983 as the 1.6-litre F6, this engine was found in the Mazda B-Series truck and Mazda G platform models such as Mazda 626/Capella as well as many other models internationally including Mazda Bongo and Ford Freda clone, Mazda B-series based Ford Courier, Mazda 929 HC and the GD platform-based Ford Probe

Mazda F engine
Carburetted 8-valve FE engine in a 1983 626 GC
Overview
ManufacturerMazda
Production1977–2002
Layout
ConfigurationInline-4
Displacement1.8 L (1,769 cc)
1.8 L (1,789 cc)
1.8 L (1,839 cc)
2.0 L (1,970 cc)
2.0 L (1,991 cc)
2.0 L (1,998 cc)
2.2 L (2,184 cc)
Cylinder bore80 mm (3.15 in)
81 mm (3.19 in)
83 mm (3.27 in)
86 mm (3.39 in)
Piston stroke77 mm (3.03 in)
85 mm (3.35 in)
86 mm (3.39 in)
88 mm (3.46 in)
92 mm (3.62 in)
98 mm (3.86 in)
Cylinder block materialCast iron
Cylinder head materialAlloy
ValvetrainSOHC 2 & 3 valves x cyl.
DOHC 4 valves x cyl.
Compression ratio7.8:1, 8.6:1, 9.1:1, 9.2:1, 9.7:1, 10.0:1
Combustion
TurbochargerIHI RHB5 VJ11 with air-to-air intercooler (some versions)
Fuel systemCarburetor, Fuel injection
Fuel typeGasoline
Cooling systemWater cooled
Output
Power output73–170 PS (54–125 kW; 72–168 hp)
Torque output89–190 lb⋅ft (121–258 N⋅m)

There were four basic head types within the F range, the diesel SOHC 8-valve (R-series), the petrol SOHC 8-valve, petrol SOHC 12-valve, and the petrol DOHC 16-valve. These heads came attached to multiple variations of the different blocks and strokes. Only the petrol 8-valve and 12-valve shared the same gasket pattern. It was built at the Miyoshi Plant in Miyoshi, Hiroshima, Japan.

Predecessors (VC/MA/F)

edit

These engines are only the predecessors to the F-series engines, in no other way related. They were fitted to rear-wheel drive models in a longitudinal arrangement. This is in contrast to the successor engines that were designed for transverse front-wheel drive applications as had become the trend in the late-1970s and early-1980s.

The VC is a 1.8 L (1,769 cc) overhead camshaft inline-four, with a bore and a stroke of 80 mm × 88 mm (3.15 in × 3.46 in). It was all new in 1975 (pre-1975 1.8 Couriers got the earlier, long-stroke VB engine) and has an alloy eight-valve head on an iron block. Output varied considerably depending on market and installation, in a 1981 UK-market B1800 it is 84 hp (63 kW; 85 PS) DIN at 5000 rpm and 13.7 kg⋅m (134 N⋅m; 99 lb⋅ft) at 2500 rpm.[1]

Applications:

MA/F

edit

The 2.0 L (1,970 cc) was designated MA. Bore was as for the VC, 80 mm (3.15 in), but stroke was increased to 98 mm (3.86 in). This SOHC engine with a 2–barrel carburettor produced 89 hp (66 kW; 90 PS) and 109 lb⋅ft (148 N⋅m). A more fuel-efficient 1–barrel version produced 77 hp (57 kW; 78 PS). Later on, this engine was designated the F.

Applications:

The smallest of the F-family engines is the F6 8-valve SOHC engine. Essentially a de-bored and de-stroked version of the base FE 2.0 with a bore and stroke of 81 mm × 77 mm (3.19 in × 3.03 in). At a compression ratio of 8.6:1, output is 73 hp (54 kW; 74 PS) at 5500 rpm and 89 lb⋅ft (121 N⋅m) at 3500 rpm. It replaced the F/NA 1.6 from the previous generation.

Applications:

A destroked FE at 77 mm (3.03 in), the 1.8 L (1,789 cc) F8 comes in several configurations including a 12-valve head and fuel injection later in its life. It has a very high rod/stroke ratio of 2:1, bore and a stroke of 86 mm × 77 mm (3.39 in × 3.03 in). With a compression ratio of 8.6:1, power output is 80 hp (60 kW; 81 PS) at 5500 rpm and 98 lb⋅ft (133 N⋅m) at 2500 for the 8-valve SOHC carburetted versions.

Applications:

F8-DOHC

edit

The F8-DOHC is a DOHC F8 and basically a de-stroked version of the FE-DOHC displacing 1.8 L (1,789 cc). It uses the same exhaust cam, but a different intake cam with less lift and a long, single-runner intake manifold. The F8 is usually identified by its unpainted cam cover. Output was 115 PS (85 kW; 113 hp) at 6000 rpm and 115 lb⋅ft (156 N⋅m) at 5000 rpm. It is usually found in wagon variants.

Applications:

The 2.0 L (1,998 cc) FE has a square 86 mm (3.39 in) bore and stroke. It was available as an 8-valve SOHC and 12-valve SOHC. Outputs are 82 PS (60 kW; 81 hp) at 5000 rpm and 152 N⋅m (112 lb⋅ft) at 2500 rpm for the 8-valve carburetor version, or 120 PS (88 kW; 118 hp) at 5300 rpm and 178 N⋅m (131 lb⋅ft) at 3700 rpm with fuel injection, 12-valve SOHC and a higher compression ratio (10.0:1 vs 8.6:1).

Applications:

The 2.0 L (1,998 cc) fuel-injected, turbocharged FET version of the FE produced 135 hp (101 kW; 137 PS) at 5250 rpm and 175 lb⋅ft (237 N⋅m) at 2800 rpm.[citation needed] It was a variant of the 8-valve SOHC FE Featuring a small turbocharger and no intercooler producing 7 psi (0.48 bar) of boost. As such it features the same 86 mm (3.39 in) bore and stroke of the FE. The Japanese variant of this engine was dubbed the Magnum Turbo and produces 145 PS (107 kW; 143 hp). Given that the peak power for the naturally aspirated, fuel-injected FE is 118 hp (88 kW; 120 PS), the rated power for the FET is said to be conservative.

Applications:

FE-DOHC

edit
Mazda FE-DOHC
Overview
ManufacturerMazda
Also calledFE-DE, FE-ZE and FE3
Layout
ConfigurationInline-four
Displacement1998 cc
Cylinder bore86 mm
Piston stroke86 mm
Cylinder block materialCast iron
Cylinder head materialAluminium
ValvetrainDOHC 16-valve
Compression ratio8.8:1, 9.2:1, 9.5:1, 10:1, 10.5:1
Combustion
Fuel systemEFI
Fuel typePetrol
Cooling systemWater
Output
Power output132–165 PS (97–121 kW; 130–163 hp)
Specific power54kW/L
Torque output133 lbs/ft (182 Nm), 150 lbs/ft (203 Nm)
Chronology
PredecessorMazda FE
SuccessorMazda FS, Mazda L-engine, MZR

The FE-DOHC is the 16 valve DOHC variant of the FE. The official Mazda engine codes of newer iterations are FE-DE and FE-ZE, depending on output level. Commonly called the FE3 which is also stamped into its head castings. The FE-DOHC shares the same dimensions as the original FE-SOHC, including the square 86 mm (3.39 in) bore x stroke and it has a 1.74 rod/stroke ratio. The FE-DOHC is usually identified by a gold-coloured cam cover, however not always. There were at least five different FE-DOHC engines available with various compression ratio, camshaft and ECU tuning combinations, however none were fitted with a turbocharger from the factory. In European 10.0:1 compression, non-catalytic trim, the FE-DOHC produces 148 ps (108 kW) at 6000 rpm and 133 lb/ft (182 Nm) at 4000 rpm. The 9.2:1 compression, catalytic converter version produces 140 ps. The Japanese domestic market variants produce anywhere between 145 ps and 165 ps. The only vehicle with 165ps was the 96-97 Capellas Wagons, FX (MT or AT) or FX Cruising (Only exists in AT). These received different tail lights to the earlier wagons.

The FE-DOHC was a European and Japanese market engine only (excluding use by Kia), and as such was only ever delivered in vehicles by Mazda to countries in those markets, with the exception of New Zealand who also received European market models. The engine was first fitted to the GD model 1988-1992 626 GT, 1987-1991 Capella, and the 626 Coupé GT 2.0i/Capella C2 GT-X and GT-R. In South Africa, Samcor – who built Mazdas under licence – also fitted the FE-DOHC engine to the Mazda 323 from 1991 to 1994.

Alongside the sedan, hatch and coupé models the FE-DOHC was also being used in the GV wagon, which ran until 1997. The rest of the world mainly received the FE-DOHC in the 1995–2003 Kia Sportage, built by Kia under license. Kia first introduced the engine in March 1992, when they installed it in the Kia Concord, a license built version of the 1982 Mazda Capella. The Sportage variant was reconfigured for rear-wheel drive configuration with long single-runner intake manifold, low-duration cams and exclusively in the low compression ratio of 9.2:1.

Applications:

Capella Cargo variants
1.8 Cargo SV 08.1992 - 09.1994 18114 FF MT G 1.8 F8 115 E-GV8W
1.8 Cargo SV 08.1992 - 09.1994 19147 FF AT G 1.8 F8 115 E-GV8W
1.8 Cargo SX 08.1992 - 09.1994 21379 FF MT G 1.8 F8 115 E-GV8W
1.8 Cargo SX 08.1992 - 09.1994 22412 FF AT G 1.8 F8 115 E-GV8W
1.8 Wagon SV 10.1994 - 06.1996 18936 FF MT G 1.8 F8 115 E-GV8W
1.8 Wagon SV 10.1994 - 06.1996 19969 FF AT G 1.8 F8 115 E-GV8W
1.8 Wagon SV 07.1996 - 10.1997 18936 FF MT G 1.8 F8-DE 115 E-GV8W
1.8 Wagon SV 07.1996 - 10.1997 19969 FF AT G 1.8 F8-DE 115 E-GV8W
1.8 Wagon SV-F 07.1996 - 10.1997 21890 FF AT G 1.8 F8-DE 115 E-GV8W
1.8 Wagon SX 10.1994 - 06.1996 22190 FF AT G 1.8 F8 115 E-GV8W
1.8 Wagon SX 07.1996 - 10.1997 22190 FF AT G 1.8 F8-DE 115 E-GV8W
2.0 Cargo GT 10.1990 - 07.1992 22812 4WD MT G 2.0 FE 150 E-GVER
2.0 Cargo GT 10.1990 - 07.1992 23845 4WD AT G 2.0 FE 145 E-GVER
2.0 Cargo GT 08.1992 - 09.1994 25299 4WD MT G 2.0 FE 150 Y-GVER
2.0 Cargo GT 08.1992 - 09.1994 26332 4WD AT G 2.0 FE 145 Y-GVER
2.0 Wagon FX 10.1994 - 06.1996 25610 4WD MT G 2.0 FE 150 E-GVER
2.0 Wagon FX 10.1994 - 06.1996 26643 4WD AT G 2.0 FE 145 E-GVER
2.0 Wagon FX 07.1996 - 10.1997 26599 4WD MT G 2.0 FE-ZE 165 E-GVER
2.0 Wagon FX 07.1996 - 10.1997 27632 4WD AT G 2.0 FE-ZE 165 E-GVER
2.0 Wagon FX cruising 07.1996 - 10.1997 28076 4WD AT G 2.0 FE-ZE 165 E-GVER
2.0 Wagon SV 10.1994 - 06.1996 24411 4WD AT G 2.0 FE 145 E-GVER
2.0 Wagon SV 07.1996 - 10.1997 21079 FF AT G 2.0 FE-DE 145 E-GVEW
2.0 Wagon SV 07.1996 - 10.1997 24600 4WD AT G 2.0 FE-DE 145 E-GVER
2.0 Wagon SX cruising 07.1996 - 10.1997 24944 FF AT G 2.0 FE-DE 145 E-GVEW

Design

edit

The Mazda FE-DOHC uses a wide-angle, DOHC, belt-driven valvetrain configuration with flat-tappet 33 mm HLA bucket lifters. It is a non interference design. There are two valve springs per valve and four valves per cylinder. While a dual valve spring configuration is used, the stock springs are fairly low-sprung. Low spring rates were chosen for fuel efficiency and increased valvetrain longevity, and low friction with the dual valve springs for the reduction of harmonics and increased valve stability.

The head gasket used on the Kia version can be sourced in North America, but the builder must note that the coolant passage holes are configured for a RWD cooling system. Attempting to use the RWD head gasket in FWD cooling configuration will result in improper flow and can result in overheating of cylinder #4. Like many DOHC engines, this engine has an interference valvetrain design, making periodic timing belt changes vital to the engine's life. Should the timing belt break the engine should be replaced as piston and valvetrain damage will occur.[2]

The Mazda FE-DOHC came with several different camshaft profiles from the factory. As such there were several camshaft combinations available.

Camshaft Lift (mm) Duration (deg)
FE5A 8.855 250°
FE3N 8.852 245°
FEAP 8.650 230
KO13 ? ?
F8K1 6.800 225

The F8K1 was the intake camshaft for the F8-DOHC, only listed due to family ties.

The combinations available:

Intake Exhaust
FE5A FE5A
FE3N FE3N
FEAP FE3N
FE3N KO13
F8K1 FE3N

VICS

edit

The FE-DOHC featured Mazda's VICS system, short for Variable Inertia Control System, a variable intake setup to optimize runner length and resonance at different engine speeds. Much like Toyota's Acoustic Control Induction System, it had two sets of intake runners, a long set for low-medium RPMs, and a short set for high RPMs. It was operated by a vacuum solenoid based on the engine's current speed, actuating a pair of butterflies inside the manifold to open or close the short runners past 5400 RPM. This system has been used on many Mazda engines since including the BP. The K-series V6 engines used a different principle to the same effect dubbed VRIS. Two versions of the VICS intake system exist, one has steeper straighter runners than the other, which is kinked for vehicle packaging reasons. VICS was not present on the F8-DOHC or some of Kia version of the FE-DOHC, both of which use a conventional intake manifold design.

The F2 is a stroked version of the FE with a bore and stroke of 86 mm × 94 mm (3.39 in × 3.70 in), for a displacement of 2.2 L (2,184 cc). Introduced for the 1988–1992 GD platform cars, it can also be found in the B2200 pickup and Ford Probe. A high-output variant of the F2 coded F2H2 was used in RWD configuration in the Mazda 929. The compression ratio was raised to 9.2:1 and produced 127 hp (95 kW; 129 PS)/141 lb⋅ft (191 N⋅m). Although available as an 8-valve SOHC in the B2200, this engine is most commonly a 12-valve SOHC. With an 8.6:1 compression ratio, it generates 110 hp (82 kW; 112 PS) at 4700 rpm and 130 lb⋅ft (176 N⋅m).

Applications:

The F2T is a turbocharged version of the F2 equipped with an IHI-supplied RHB5 VJ11 turbocharger and an air-to-air intercooler. Internally the engine retains its bore and stroke of 86 mm × 94 mm (3.39 in × 3.70 in), but has a lower compression ratio of 7.8:1. It produces 145 hp (108 kW; 147 PS) at 4300 rpm and 190 lb⋅ft (258 N⋅m). It is rumored that this figure was produced at the drive wheels, as this engine was suspected to be under-rated. However Mazda had only ever quoted these figures as SAE Net and DIN which are crankshaft rating standards, as required by law in the countries where the cars were sold. Due to the increased torque output, Mazda was forced to increase the strength of the transmission for the F2T, producing the H-type, the strongest FWD gearbox Mazda produced at the time.

Applications:

R-series

edit

The R-series engines are diesel variants that are very closely related to the F-series, sharing essentially the same engine block.

Later engines with 'F' nomenclature

edit

The FS and FP are structurally different from the original F-blocks with much smaller bore spacing, much shorter deck height and smaller head and journal dimensions. The FS and FP are more closely related to the Mazda BP engine than they are with the original F-engine.

The 2.0 L (1,991 cc) FS has a bore and stroke of 83 mm × 92 mm (3.27 in × 3.62 in) and produces 130 PS (96 kW; 128 hp) and 135 lb⋅ft (183 N⋅m) in its most common variant up to 170 PS (125 kW; 168 hp) in the Japanese domestic market. In 1998 the engine evolved into the FS-DE by undergoing several changes, most notably a distributorless ignition as well as the move from hydraulic lifters to solid shim-on-bucket lifters. Japan received a couple of variations of the FS motor, all with increased power outputs. The highest is the Mazdaspeed Familia version of the FS-ZE which produces 170 PS (125 kW; 168 hp). Mazdaspeed US decided to turbocharge the US FS-DE, known as the FS-DET in 2003, for the Mazdaspeed Protegé. This model generates 170 hp (127 kW; 172 PS), practically the same as the naturally aspirated Mazdaspeed Familia edition FS-ZE but with a plumper torque curve. This means that the Mazdaspeed Protegé's engine is internally identical to the regular FS-DE, except with a turbocharger installed.

The updated FS-DE engine did enjoy a few minor technical features, such as:

  • Oil Squirters
  • VICS (Variable Inertial Charge System) - A system that can vary the volume of the intake manifold resulting in a broader power band. There were known issues with this system, the most noteworthy was a defect which allowed screws that secured the VICS butterfly valves to come loose and end up being sucked into the engine. Some engines had to be replaced entirely due to the extent of the damage caused.[3]
  • VTCS (Variable Tumble Control System) - A set of butterflies in the intake manifold that would close to promote low emissions combustion under cold start at low engine speeds. These had a reputation of being noisy at times.
  • Windage Tray

Applications:

The 1.8 L (1,839 cc) FP is a destroked version of the FS, with a bore and stroke of 83 mm × 85 mm (3.27 in × 3.35 in). It produces 122 hp (91 kW; 124 PS) and 120 lb⋅ft (163 N⋅m). This engine is often incorrectly called the F8, which is the earlier destroked engine based on the FE. The FP enjoys a much better power band vs the FS due to slightly different camshafts and a better rod ratio over the regular FS-DE.

The FP is very close to the FS in many ways and shares a large percentage of parts but has its own FP specific block, crank, rods, pistons and timing belt. The pistons for the FS produce a compression ratio of 9.1:1 (USDM) but when FP pistons are used in the FS they yield 9.7:1 compression ratio. The biggest performance difference is that the European 1.8L FP & 2.0L FS both have maximum compression of 15 bar (220 psi) vs the North American 2.0L FS which has a maximum compression of 11.5 bar (167 psi). The KL & FS ATX engines both require 10° BTDC ignition timing while the FS MTX & FP require 12° BTDC. The FP does not share the same G25M-R transmission as the FS. In the Protegé it uses a F25M-R instead.

Applications:

References

edit
  1. ^ The Mazda B1800 Pickup (brochure), Tunbridge Wells, Kent, UK: Mazda Car Imports (GB), May 1981, B1800/81/5
  2. ^ a b FE Service Manual. Section 1A: Mazda. p. 14.{{cite book}}: CS1 maint: location (link)
  3. ^ [1] VICS recall information

3. Chilton's Repair and Tune-up guide Mazda Pickups 1971-86 copyright 1986 4. http://protegefaq.net/

edit