Methyl 2-bromoacetate (methyl bromoactate) is a chemical compound with the molecular formula C3H5BrO2.
Names | |
---|---|
Preferred IUPAC name
Methyl bromoacetate | |
Other names
Bromoacetic acid methyl ester, Methyl α-bromoacetate
| |
Identifiers | |
3D model (JSmol)
|
|
ChemSpider | |
ECHA InfoCard | 100.002.273 |
EC Number |
|
PubChem CID
|
|
UNII | |
CompTox Dashboard (EPA)
|
|
| |
Properties | |
C3H5BrO2 | |
Molar mass | 152.975 g·mol−1 |
Density | 1.6±0.1 g/cm3[1] |
Boiling point | 154 °C (309 °F; 427 K) |
Solubility | Soluble in water |
Hazards | |
GHS labelling: | |
Warning | |
H301, H311, H314, H335 | |
P233, P260, P261, P264, P270, P271, P280, P301, P302, P303, P304, P305, P310, P312, P321, P322, P330, P331, P338, P340, P351, P352, P353, P361, P363, P403, P405, P501 | |
Flash point | 63 °C (145 °F; 336 K) |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
|
Properties
editMethyl 2-bromoacetate is colorless or straw-colored liquid. The smell is sharp and penetrating. It is soluble in water and also has a higher density than water.[2] It is incompatible with acids, bases, oxidizing agents, and reducing agents.[3]
Application
editMethyl bromoacetate is an alkylating agent. It has been used to alkylate phenol and amino groups.[4][5] Moreover, it can be used to make vitamins and pharmaceutical drugs. It is commonly used as a reagent in chemical modification of histidine.[2] In addition, methyl bromoacetate also use in synthesize of coumarins and cis-cyclopropane. It reacts with conjugated base and produce alkylated carbene complexes.[3]
Safety
editMethyl bromoacetate can be toxic by ingestion and inhalation. It can also irritate the skin and eyes.[2]
See also
editReferences
edit- ^ "CSID:54945". ChemSpider. Retrieved 9 July 2017.
- ^ a b c "Methyl Bromoacetate - Compound Summary for CID 60984". PubChem Compound Database. USA: National Center for Biotechnology Information. Identification. Retrieved 9 July 2017.
- ^ a b "A10605 Methyl bromoacetate, 98+%". Alfa Aesar. Retrieved 9 July 2017.
- ^ Piątek, Piotr; Jurczak, Janusz (25 September 2002). "A selective colorimetric anion sensor based on an amide group containing macrocycle†". The Royal Society of Chemistry. PMID 12430485.
- ^ Raju, B.; Murphy, E.; Levy, L.A.; Hall, R.D.; London, R.E. (1 March 1989). "A fluorescent indicator for measuring cytosolic free magnesium". The American Journal of Physiology. 256 (3 Pt 1): C540-8. doi:10.1152/ajpcell.1989.256.3.C540. PMID 2923192.
Extra reading
edit- Raju, B.; Murphy, E.; Levy, L. A.; Hall, R. D.; London, R. E. (1 March 1989). "A fluorescent indicator for measuring cytosolic free magnesium". American Journal of Physiology. Cell Physiology. 256 (3): C540–C548. doi:10.1152/ajpcell.1989.256.3.C540. PMID 2923192.
- Upper, Christen D.; West, Charles A. (July 1967). "Biosynthesis of Gibberellins". Journal of Biological Chemistry. 242 (14): 3285–3292. doi:10.1016/S0021-9258(18)95908-9.
- Davis, Franklin A.; Zhou, Ping; Reddy, G. Venkat (June 1994). "Asymmetric Synthesis and Reactions of cis-N-(p-Toluenesulfinyl)aziridine-2-carboxylic Acids". The Journal of Organic Chemistry. 59 (12): 3243–3245. doi:10.1021/jo00091a001.
- Henderson, Jaclyn L.; Edwards, Andrew S.; Greaney, Michael F. (June 2006). "Three-Component Coupling of Benzyne: Domino Intermolecular Carbopalladation". Journal of the American Chemical Society. 128 (23): 7426–7427. doi:10.1021/ja0615526. PMID 16756281.
- Hannick, Steven M.; Kishi, Yoshito (October 1983). "An improved procedure for the Blaise reaction: a short, practical route to the key intermediates of the saxitoxin synthesis". The Journal of Organic Chemistry. 48 (21): 3833–3835. doi:10.1021/jo00169a053.