In mathematics, Mnëv's universality theorem is a result in the intersection of combinatorics and algebraic geometry used to represent algebraic (or semialgebraic) varieties as realizations of oriented matroids, up to an equivalence relation known as stable equivalence.[1][2] It can also be read as the statement that point-hyperplane configurations (and more specifically, the realization spaces of oriented matroids) can behave arbitrarily complicated. It was discovered by Nikolai Mnëv in his 1986 Ph.D. thesis.
Oriented matroids
editFor the purposes of this article, an oriented matroid of a finite subset is the list of partitions of induced by hyperplanes in (each oriented hyperplane partitions into the points on the "positive side" of the hyperplane, the points on the "negative side" of the hyperplane, and the points that lie on the hyperplane). In particular, an oriented matroid contains the full information of the incidence relations in , inducing on a matroid structure.
The realization space of an oriented matroid is the space of all configurations of points inducing the same oriented matroid structure.
Stable equivalence of semialgebraic sets
editFor the purpose of this article stable equivalence of semialgebraic sets is defined as described below.
Let and be semialgebraic sets, obtained as a disjoint union of connected semialgebraic sets
- and
We say that and are rationally equivalent if there exist homeomorphisms defined by rational maps.
Let be semialgebraic sets,
- and
with mapping to under the natural projection deleting the last coordinates. We say that is a stable projection if there exist integer polynomial maps such that The stable equivalence is an equivalence relation on semialgebraic subsets generated by stable projections and rational equivalence.
Stetement of Mnëv's universality theorem
editLet be a semialgebraic subset in defined over integers. Then is stably equivalent to a realization space of some oriented matroid.
Implications
editMnëv's universality theorem has numerous applications in algebraic geometry, due to Laurent Lafforgue, Ravi Vakil and others, allowing one to construct moduli spaces with arbitrarily bad behaviour. This theorem together with Kempe's universality theorem has been used also by Kapovich and Millson in the study of the moduli spaces of linkages and arrangements.[3]
Mnëv's universality theorem also gives rise to the universality theorem for convex polytopes. In this form it states that every semialgebraic set is stably equivalent to the realization space of some convex polytope. Jürgen Richter-Gebert showed that universality already applies to polytopes of dimension four.[4]
See also
edit- Convex Polytopes by Branko Grünbaum, revised edition, a book that includes material on the theorem and its relation to the realizability of polytopes from their combinatorial structures.
References
edit- ^ Mnëv, N. E. (1988), "The universality theorems on the classification problem of configuration varieties and convex polytopes varieties", in Viro, Oleg Yanovich; Vershik, Anatoly Moiseevich (eds.), Topology and geometry—Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, pp. 527–543, doi:10.1007/BFb0082792, MR 0970093
- ^ Vershik, A. M. (1988), "Topology of the convex polytopes' manifolds, the manifold of the projective configurations of a given combinatorial type and representations of lattices", in Viro, Oleg Yanovich; Vershik, Anatoly Moiseevich (eds.), Topology and geometry—Rohlin Seminar, Lecture Notes in Math., vol. 1346, Springer, Berlin, pp. 557–581, doi:10.1007/BFb0082794, MR 0970095
- ^ Kapovich, Michael; Millson, John J. (1999), Brylinski, Jean-Luc; Brylinski, Ranee; Nistor, Victor; Tsygan, Boris (eds.), "Moduli Spaces of Linkages and Arrangements", Advances in Geometry, Boston, MA: Birkhäuser, pp. 237–270, doi:10.1007/978-1-4612-1770-1_11, ISBN 978-1-4612-1770-1, retrieved 2023-04-17
- ^ Richter-Gebert, Jürgen (1999), "The universality theorems for oriented matroids and polytopes", in Chazelle, Bernard; Goodman, Jacob E.; Pollack, Richard (eds.), Discrete and Computational Geometry: Ten Years Later, Contemporary Mathematics, vol. 223, Providence, Rhode Island: American Mathematical Society, pp. 269–292, doi:10.1090/conm/223/03144, MR 1661389
Further reading
edit- Vakil, Ravi (2006), "Murphy's law in algebraic geometry: badly-behaved deformation spaces", Inventiones Mathematicae, 164 (3): 569–590, arXiv:math/0411469, Bibcode:2006InMat.164..569V, doi:10.1007/s00222-005-0481-9, MR 2227692, S2CID 7262537
- Richter-Gebert, Jürgen (1995), "Mnëv's universality theorem revisited", Séminaire Lotharingien de Combinatoire, 34, Article B34h, MR 1399755