In chemistry, acetylation is an organic esterification reaction with acetic acid. It introduces an acetyl group into a chemical compound. Such compounds are termed acetate esters or simply acetates. Deacetylation is the opposite reaction, the removal of an acetyl group from a chemical compound.
Acetylation/deacetylation in biology
editDeacylations "play crucial roles in gene transcription and most likely in all eukaryotic biological processes that involve chromatin".[1]
Acetylation is one type of post-translational modification of proteins. The acetylation of the ε-amino group of lysine, which is common, converts a charged side chain to a neutral one.[2] Acetylation/deacetylation of histones also plays a role in gene expression and cancer.[3] These modifications are effected by enzymes called histone acetyltransferases (HATs) and histone deacetylases (HDACs).[4]
Two general mechanisms are known for deacetylation. One mechanism involves zinc binding to the acetyl oxygen. Another family of deacetylases require NAD+, which transfers an ribosyl group to the acetyl oxygen.[1]
Organic synthesis
editAcetate esters[5] and acetamides[6] are generally prepared by acetylations. Acetylations are often used in making C-acetyl bonds in Friedel-Crafts reactions.[7][8] Carbanions and their equivalents are susceptible to acetylations.[9]
Acetylation reagents
editMany acetylations are achieved using these three reagents:
- Acetic anhydride. This reagent is common in the laboratory; its use cogenerates acetic acid.[7]
- Acetyl chloride. This reagent is also common in the laboratory, but its use cogenerates hydrogen chloride, which can be undesirable.[8]
- Ketene. At one time acetic anhydride was prepared by the reaction of ketene with acetic acid:[10]
- H2C=C=O + CH3CO2H → (CH3CO)2O
Acetylation of cellulose
editCellulose is a polyol and thus susceptible to acetylation, which is achieved using acetic anhydride. Acetylation disrupts hydrogen bonding, which otherwise dominates the properties of cellulose. Consequently, the cellulose esters are soluble in organic solvents and can be cast into fibers and films.[11]
Transacetylation
editTransacetylation uses vinyl acetate as an acetyl donor and lipase as a catalyst. This methodology allows the preparation of enantio-enriched alcohols and acetates.[12]
See also
editReferences
edit- ^ a b Seto, E.; Yoshida, M. (2014). "Erasers of Histone Acetylation: The Histone Deacetylase Enzymes". Cold Spring Harbor Perspectives in Biology. 6 (4): a018713. doi:10.1101/cshperspect.a018713. PMC 3970420. PMID 24691964.
- ^ Ali, Ibraheem; Conrad, Ryan J.; Verdin, Eric; Ott, Melanie (2018). "Lysine Acetylation Goes Global: From Epigenetics to Metabolism and Therapeutics". Chemical Reviews. 118 (3): 1216–1252. doi:10.1021/acs.chemrev.7b00181. PMC 6609103. PMID 29405707.
- ^ Bolden, Jessica E.; Peart, Melissa J.; Johnstone, Ricky W. (2006). "Anticancer activities of histone deacetylase inhibitors". Nature Reviews Drug Discovery. 5 (9): 769–784. doi:10.1038/nrd2133. PMID 16955068. S2CID 2857250.
- ^ Shahbazian, Mona D.; Grunstein, Michael (2007). "Functions of Site-Specific Histone Acetylation and Deacetylation". Annual Review of Biochemistry. 76: 75–100. doi:10.1146/annurev.biochem.76.052705.162114. PMID 17362198.
- ^ F. K. Thayer (1925). "Acetylmandelic Acid and Acetylmandelyl Chloride". Organic Syntheses. 4: 1. doi:10.15227/orgsyn.004.0001.
- ^ Herbst, R. M.; Shemin, D. (1939). "Acetylglycine". Organic Syntheses. 19: 4. doi:10.15227/orgsyn.019.0004.
- ^ a b F. E. Ray and George Rieveschl, Jr (1948). "2-Acetylfluorene". Organic Syntheses. 28: 3. doi:10.15227/orgsyn.028.0003.
- ^ a b Merritt, Jr., Charles; Braun, Charles E. (1950). "9-Acetylanthracene". Organic Syntheses. 30: 1. doi:10.15227/orgsyn.030.0001.
- ^ Denoon, C. E. Jr.; Adkins, Homer; Rainey, James L. (1940). "Acetylacetone". Organic Syntheses. 20: 6. doi:10.15227/orgsyn.020.0006.
- ^ Arpe, Hans-Jürgen (2007), Industrielle organische Chemie: Bedeutende vor- und Zwischenprodukte (in German) (6th ed.), Weinheim: Wiley-VCH, pp. 200–1, ISBN 978-3-527-31540-6[permanent dead link ]
- ^ Balser, Klaus; Hoppe, Lutz; Eicher, Theo; Wandel, Martin; Astheimer, Hans‐Joachim; Steinmeier, Hans; Allen, John M. (2004). "Cellulose Esters". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.a05_419.pub2. ISBN 978-3-527-30385-4.
- ^ Manchand, Percy S. (2001). "Vinyl Acetate". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rv008. ISBN 0471936235.