Research reactors are nuclear fission-based nuclear reactors that serve primarily as a neutron source. They are also called non-power reactors, in contrast to power reactors that are used for electricity production, heat generation, or maritime propulsion.
Purpose
editThe neutrons produced by a research reactor are used for neutron scattering, non-destructive testing, analysis and testing of materials, production of radioisotopes, research and public outreach and education. Research reactors that produce radioisotopes for medical or industrial use are sometimes called isotope reactors. Reactors that are optimised for beamline experiments nowadays compete with spallation sources.
Technical aspects
editResearch reactors are simpler than power reactors and operate at lower temperatures. They need far less fuel, and far less fission products build up as the fuel is used. On the other hand, their fuel requires more highly enriched uranium, typically up to 20% U-235,[1] although some use 93% U-235; while 20% enrichment is not generally considered usable in nuclear weapons, 93% is commonly referred to as "weapons-grade". They also have a very high power density in the core, which requires special design features. Like power reactors, the core needs cooling, typically natural or forced convection with water, and a moderator is required to slow the neutron velocities and enhance fission. As neutron production is their main function, most research reactors benefit from reflectors to reduce neutron loss from the core.
Conversion to low enriched uranium
editThe International Atomic Energy Agency and the U.S. Department of Energy initiated a program in 1978 to develop the means to convert research reactors from using highly enriched uranium (HEU) to the use of low enriched uranium (LEU), in support of its nonproliferation policy.[2][3] By that time, the U.S. had supplied research reactors and highly enriched uranium to 41 countries as part of its Atoms for Peace program. In 2004, the U.S. Department of Energy extended its Foreign Research Reactor Spent Nuclear Fuel Acceptance program until 2019.[4]
As of 2016, a National Academies of Sciences, Engineering, and Medicine report concluded converting all research reactors to LEU cannot be completed until 2035 at the earliest. In part this is because the development of reliable LEU fuel for high neutron flux research reactors, that does not fail through swelling, has been slower than expected.[5] As of 2020[update], 72 HEU research reactors remain.[6]
Designers and constructors
editWhile in the 1950s, 1960s and 1970s there were a number of companies that specialized in the design and construction of research reactors, the activity of this market cooled down afterwards, and many companies withdrew.
The market has consolidated today into a few companies that concentrate the key projects on a worldwide basis.
The most recent international tender (1999) for a research reactor was that organized by the Australian Nuclear Science and Technology Organisation for the design, construction and commissioning of the Open-pool Australian lightwater reactor (OPAL). Four companies were prequalified: Atomic Energy of Canada Limited (AECL), INVAP, Siemens and Technicatom. The project was awarded to INVAP that built the reactor. In recent years, AECL withdrew from this market, and Siemens and Technicatom activities were merged into Areva.
Classes of research reactors
edit- Aqueous homogeneous reactor
- Argonaut class reactor
- DIDO class, six high-flux reactors worldwide
- TRIGA, a highly successful class with >50 installations worldwide
- SLOWPOKE reactor class, developed by AECL, Canada
- OPAL reactor class, developed by INVAP, Argentina
- Miniature neutron source reactor, based on the SLOWPOKE design, developed by AECL, currently exported by China
- Aerojet General Nucleonics, 201 Models. Developed by Aerojet General in the United States. Three current reactors in operation at Idaho State University, The University of New Mexico, and Texas A&M University.
Research centers
editA complete list can be found at the List of nuclear research reactors.
Research centers that operate a reactor:
Decommissioned research reactors:
References
edit- ^ Alrwashdeh, Mohammad, and Saeed A. Alameri. "Reactor Monte Carlo (RMC) model validation and verification in compare with MCNP for plate-type reactor." AIP Advances 9, no. 7 (2019): 075112. https://doi.org/10.1063/1.5115807
- ^ "CRP on Conversion of Miniature Neutron Source Research Reactors (MNSR) to Low Enriched Uranium (LEU)". Nuclear Fuel Cycle & Waste Technology. International Atomic Energy Agency. 13 January 2014. Archived from the original on Jun 12, 2018. Retrieved 25 October 2015.
- ^ "Reduced Enrichment for Research and Test Reactors". National Nuclear Security Administration. Archived from the original on 29 October 2004.
- ^ "U.S. Foreign Research Reactor Spent Nuclear Fuel Acceptance". National Nuclear Security Administration. Archived from the original on 22 September 2006.
- ^ Cho, Adrian (28 January 2016). "Ridding research reactors of highly enriched uranium to take decades longer than projected". Science. Retrieved 13 April 2020.
- ^ "IAEA highlights work to convert research reactors". World Nuclear News. 24 February 2020. Retrieved 13 April 2020.
- ^ a b c "Budapest Research Reactor | Budapest Neutron Centre ...for research, science and innovation!". www.bnc.hu. Retrieved 2018-02-15.
- ^ "Institute for Nuclear Technology". reak.bme.hu. Retrieved 2019-09-11.
- ^ "Nuclear Reactors". pd.chem.ucl.ac.uk. Retrieved 2018-02-15.
- ^ a b "RA-6 de Argentina" (in European Spanish). Archived from the original on 2018-02-16. Retrieved 2018-02-15.
- ^ "Research reactors - Canadian Nuclear Association". Canadian Nuclear Association. Archived from the original on 2018-02-16. Retrieved 2018-02-15.
- ^ "High Flux Reactor - European Commission". ec.europa.eu. 13 February 2013. Archived from the original on 2018-02-16. Retrieved 2018-02-15.
- ^ Mainz, Johannes Gutenberg-Universität. "Reactor". www.kernchemie.uni-mainz.de (in German). Archived from the original on 2018-02-16. Retrieved 2018-02-15.
- ^ a b "ATI : Reactor". ati.tuwien.ac.at. Retrieved 2018-02-15.
- ^ a b c "The reactor | National Research Nuclear University MEPhI". eng.mephi.ru. Retrieved 2018-02-15.
- ^ a b "SAFARI-1". www.necsa.co.za. Archived from the original on 2018-01-31. Retrieved 2018-02-15.
- ^ a b "High-Flux Advanced Neutron Application Reactor (HANARO) | Facilities | NTI". www.nti.org. Retrieved 2018-02-15.
- ^ a b "Research Reactor LVR-15 | Centrum výzkumu Řež". cvrez.cz. Archived from the original on 2018-02-16. Retrieved 2018-02-15.
- ^ a b "History - Nuclear Reactor Program". Nuclear Reactor Program. Retrieved 2018-07-17.
- ^ "ATR Factsheet" (PDF). Idaho National Laboratory. Archived from the original (PDF) on 2008-07-03. Retrieved 2008-02-28.
- ^ a b "Maryland University Training Reactor (MUTR) | 250 kW TRIGA Reactor | University of Maryland Radiation Facilities". radiation.umd.edu/. Retrieved 2018-06-11.
- ^ "Nuclear Science Center Washington State University". nsc.wsu.edu. Retrieved 2019-08-06.
- ^ "Research Reactor Database - GHARR-1". International Atomic Energy Agency. Retrieved February 15, 2018.
- ^ "Ende der Neutronen-Ära". pro-physik.de (in German). Retrieved 2024-04-14.
- ^ "CONSORT Reactor Decommissioning: From fission to fuel gone". imperial.ac.uk. Retrieved 2024-10-14.
- ^ "UK research reactor fully decommissioned". world-nuclear-news.org. Retrieved 2024-10-14.
- ^ "Winfrith's DRAGON loses its fire". www.nda.gov.uk. Archived from the original on 6 October 2012. Retrieved 12 January 2022.
- ^ a b Karlsen, Wade; Vilkamo, Olli (2016-12-14). "Finland's old nuclear research reactor to be decommissioned – New Centre for Nuclear Safety under construction". VTT Impulse. Retrieved 2018-02-22.
- ^ "Research Reactor Database". International Atomic Energy Agency. Retrieved 2018-02-22.