Non-uniform discrete Fourier transform

In applied mathematics, the non-uniform discrete Fourier transform (NUDFT or NDFT) of a signal is a type of Fourier transform, related to a discrete Fourier transform or discrete-time Fourier transform, but in which the input signal is not sampled at equally spaced points or frequencies (or both). It is a generalization of the shifted DFT. It has important applications in signal processing,[1] magnetic resonance imaging,[2] and the numerical solution of partial differential equations.[3]

As a generalized approach for nonuniform sampling, the NUDFT allows one to obtain frequency domain information of a finite length signal at any frequency. One of the reasons to adopt the NUDFT is that many signals have their energy distributed nonuniformly in the frequency domain. Therefore, a nonuniform sampling scheme could be more convenient and useful in many digital signal processing applications. For example, the NUDFT provides a variable spectral resolution controlled by the user.

Definition

edit

The nonuniform discrete Fourier transform transforms a sequence of   complex numbers   into another sequence of complex numbers   defined by

  (1)

where   are sample points and   are frequencies. Note that if   and  , then equation (1) reduces to the discrete Fourier transform. There are three types of NUDFTs.[4] Note that these types are not universal and different authors will refer to different types by different numbers.

  • The nonuniform discrete Fourier transform of type I (NUDFT-I) uses uniform sample points   but nonuniform (i.e. non-integer) frequencies  . This corresponds to evaluating a generalized Fourier series at equispaced points. It is also known as NDFT[5] or forward NDFT [6][7]
  • The nonuniform discrete Fourier transform of type II (NUDFT-II) uses uniform (i.e. integer) frequencies   but nonuniform sample points  . This corresponds to evaluating a Fourier series at nonequispaced points. It is also known as adjoint NDFT.[7][6]
  • The nonuniform discrete Fourier transform of type III (NUDFT-III) uses both nonuniform sample points   and nonuniform frequencies  . This corresponds to evaluating a generalized Fourier series at nonequispaced points. It is also known as NNDFT.

A similar set of NUDFTs can be defined by substituting   for   in equation (1). Unlike in the uniform case, however, this substitution is unrelated to the inverse Fourier transform. The inversion of the NUDFT is a separate problem, discussed below.

Multidimensional NUDFT

edit

The multidimensional NUDFT converts a  -dimensional array of complex numbers   into another  -dimensional array of complex numbers   defined by

 

where   are sample points,   are frequencies, and   and   are  -dimensional vectors of indices from 0 to  . The multidimensional NUDFTs of types I, II, and III are defined analogously to the 1D case.[4]

Relationship to Z-transform

edit

The NUDFT-I can be expressed as a Z-transform.[8] The NUDFT-I of a sequence   of length   is

 

where   is the Z-transform of  , and   are arbitrarily distinct points in the z-plane. Note that the NUDFT reduces to the DFT when the sampling points are located on the unit circle at equally spaced angles.

Expressing the above as a matrix, we get

 

where

 

Direct inversion of the NUDFT-I

edit

As we can see, the NUDFT-I is characterized by   and hence the     points. If we further factorize  , we can see that   is nonsingular provided the     points are distinct. If   is nonsingular, we can get a unique inverse NUDFT-I as follows:

 .

Given  , we can use Gaussian elimination to solve for  . However, the complexity of this method is  . To solve this problem more efficiently, we first determine   directly by polynomial interpolation:

 .

Then   are the coefficients of the above interpolating polynomial.

Expressing   as the Lagrange polynomial of order  , we get

 

where   are the fundamental polynomials:

 .

Expressing   by the Newton interpolation method, we get

 

where   is the divided difference of the  th order of   with respect to  :

 
 
 
 

The disadvantage of the Lagrange representation is that any additional point included will increase the order of the interpolating polynomial, leading to the need to recompute all the fundamental polynomials. However, any additional point included in the Newton representation only requires the addition of one more term.

We can use a lower triangular system to solve  :

 

where

 

By the above equation,   can be computed within   operations. In this way Newton interpolation is more efficient than Lagrange Interpolation unless the latter is modified by

 .

Nonuniform fast Fourier transform

edit

While a naive application of equation (1) results in an   algorithm for computing the NUDFT,   algorithms based on the fast Fourier transform (FFT) do exist. Such algorithms are referred to as NUFFTs or NFFTs and have been developed based on oversampling and interpolation,[9][10][11][12] min-max interpolation,[2] and low-rank approximation.[13] In general, NUFFTs leverage the FFT by converting the nonuniform problem into a uniform problem (or a sequence of uniform problems) to which the FFT can be applied.[4] Software libraries for performing NUFFTs are available in 1D, 2D, and 3D.[7][6][14][15][16][17]

Applications

edit

The applications of the NUDFT include:

See also

edit

References

edit
  1. ^ Bagchi, Sonali; Mitra, Sanjit K. (1999). The Nonuniform Discrete Fourier Transform and Its Applications in Signal Processing. Boston, MA: Springer US. ISBN 978-1-4615-4925-3.
  2. ^ a b Fessler, J.A.; Sutton, B.P. (February 2003). "Nonuniform fast fourier transforms using min-max interpolation". IEEE Transactions on Signal Processing. 51 (2): 560–574. Bibcode:2003ITSP...51..560F. doi:10.1109/TSP.2002.807005. hdl:2027.42/85840.
  3. ^ Lee, June-Yub; Greengard, Leslie (June 2005). "The type 3 nonuniform FFT and its applications". Journal of Computational Physics. 206 (1): 1–5. Bibcode:2005JCoPh.206....1L. doi:10.1016/j.jcp.2004.12.004.
  4. ^ a b c Greengard, Leslie; Lee, June-Yub (January 2004). "Accelerating the Nonuniform Fast Fourier Transform". SIAM Review. 46 (3): 443–454. Bibcode:2004SIAMR..46..443G. CiteSeerX 10.1.1.227.3679. doi:10.1137/S003614450343200X.
  5. ^ Plonka, Gerlind; Potts, Daniel; Steidl, Gabriele; Tasche, Manfred (2019). Numerical Fourier Analysis. Birkhäuser. doi:10.1007/978-3-030-04306-3. ISBN 978-3-030-04306-3.
  6. ^ a b c PyNUFFT Services. "Basic use of PyNUFFT — PyNUFFT 2023.2.2 documentation". pynufft.readthedocs.io. Retrieved 27 February 2024.
  7. ^ a b c The Simons Foundation. "Mathematical definitions of transforms — finufft 2.2.0 documentation". finufft.readthedocs.io. Retrieved 27 February 2024.
  8. ^ Marvasti, Farokh (2001). Nonuniform Sampling: Theory and Practice. New York: Springer. pp. 325–360. ISBN 978-1-4615-1229-5.
  9. ^ Dutt, Alok (May 1993). Fast Fourier Transforms for Nonequispaced Data (PDF) (PhD). Yale University.
  10. ^ Dutt, Alok; Rokhlin, Vladimir (November 1993). "Fast Fourier Transforms for Nonequispaced Data". SIAM Journal on Scientific Computing. 14 (6): 1368–1393. Bibcode:1993SJSC...14.1368D. doi:10.1137/0914081.
  11. ^ Potts, Daniel; Steidl, Gabriele (January 2003). "Fast Summation at Nonequispaced Knots by NFFT". SIAM Journal on Scientific Computing. 24 (6): 2013–2037. Bibcode:2003SJSC...24.2013P. doi:10.1137/S1064827502400984.
  12. ^ Boyd, John P (December 1992). "A fast algorithm for Chebyshev, Fourier, and sinc interpolation onto an irregular grid" (PDF). Journal of Computational Physics. 103 (2): 243–257. Bibcode:1992JCoPh.103..243B. doi:10.1016/0021-9991(92)90399-J. hdl:2027.42/29694.
  13. ^ Ruiz-Antolín, Diego; Townsend, Alex (20 February 2018). "A Nonuniform Fast Fourier Transform Based on Low Rank Approximation" (PDF). SIAM Journal on Scientific Computing. 40 (1): A529–A547. arXiv:1701.04492. Bibcode:2018SJSC...40A.529R. doi:10.1137/17M1134822. hdl:10902/13767.
  14. ^ "NUFFT page". cims.nyu.edu.
  15. ^ "NFFT". www.nfft.org.
  16. ^ "MikaelSlevinsky/FastTransforms.jl". GitHub. 2019-02-13.
  17. ^ "chebfun/chebfun". GitHub. 2019-02-07.
edit