Permease of phosphotransferase system

(Redirected from PTS-AG superfamily)

Permease of phosphotransferase system (or PTS-AG superfamily according to TCDB) is a superfamily of phosphotransferase enzymes that facilitate the transport of L-ascorbate (A) and galactitol (G). Classification has been established through phylogenic analysis and bioinformatics.[1][2]

Phosphotransferase permease
Identifiers
SymbolPTS
PfamPF03611
InterProIPR004703
TCDB4.A.7
OPM superfamily426
OPM protein5zov
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

The bacterial phosphoenolpyruvate:sugar phosphotransferase system (PTS) transports and phosphorylates its sugar substrates in a single energy-coupled step. This transport process is dependent on several cytoplasmic phosphoryl transfer proteins - Enzyme I (I), HPr, Enzyme IIA (IIA), and Enzyme IIB (IIB)) as well as the integral membrane sugar permease (IIC).[3][4] The PTS Enzyme II complexes are derived from independently evolving 4 PTS Enzyme II complex superfamilies, that include the (1) Glucose (Glc),(2) Mannose (Man), (3) Ascorbate-Galactitol (Asc-Gat) and (4) Dihydroxyacetone (Dha) superfamilies.

The four families that make up the PTS-GFL superfamily include:

See also

edit

References

edit
  1. ^ Chen JS, Reddy V, Chen JH, Shlykov MA, Zheng WH, Cho J, Yen MR, Saier MH (2012-01-01). "Phylogenetic characterization of transport protein superfamilies: superiority of SuperfamilyTree programs over those based on multiple alignments". Journal of Molecular Microbiology and Biotechnology. 21 (3–4): 83–96. doi:10.1159/000334611. PMC 3290041. PMID 22286036.
  2. ^ Nguyen TX, Yen MR, Barabote RD, Saier MH (2006-01-01). "Topological predictions for integral membrane permeases of the phosphoenolpyruvate:sugar phosphotransferase system". Journal of Molecular Microbiology and Biotechnology. 11 (6): 345–60. doi:10.1159/000095636. PMID 17114898.
  3. ^ Luo P, Yu X, Wang W, Fan S, Li X, Wang J (March 2015). "Crystal structure of a phosphorylation-coupled vitamin C transporter". Nature Structural & Molecular Biology. 22 (3): 238–41. doi:10.1038/nsmb.2975. PMID 25686089.
  4. ^ Luo P, Dai S, Zeng J, Duan J, Shi H, Wang J (2018). "Inward-facing conformation of l-ascorbate transporter suggests an elevator mechanism". Cell Discovery. 4: 35. doi:10.1038/s41421-018-0037-y. PMC 6048161. PMID 30038796.

Further reading

edit