Paley–Wiener theorem

(Redirected from Paley-Wiener criterion)

In mathematics, a Paley–Wiener theorem is a theorem that relates decay properties of a function or distribution at infinity with analyticity of its Fourier transform. It is named after Raymond Paley (1907–1933) and Norbert Wiener (1894–1964) who, in 1934, introduced various versions of the theorem.[1] The original theorems did not use the language of distributions, and instead applied to square-integrable functions. The first such theorem using distributions was due to Laurent Schwartz. These theorems heavily rely on the triangle inequality (to interchange the absolute value and integration).

The original work by Paley and Wiener is also used as a namesake in the fields of control theory and harmonic analysis; introducing the Paley–Wiener condition for spectral factorization and the Paley–Wiener criterion for non-harmonic Fourier series respectively.[2] These are related mathematical concepts that place the decay properties of a function in context of stability problems.

Holomorphic Fourier transforms

edit

The classical Paley–Wiener theorems make use of the holomorphic Fourier transform on classes of square-integrable functions supported on the real line. Formally, the idea is to take the integral defining the (inverse) Fourier transform

 

and allow   to be a complex number in the upper half-plane. One may then expect to differentiate under the integral in order to verify that the Cauchy–Riemann equations hold, and thus that   defines an analytic function. However, this integral may not be well-defined, even for   in  ; indeed, since   is in the upper half plane, the modulus of   grows exponentially as  ; so differentiation under the integral sign is out of the question. One must impose further restrictions on   in order to ensure that this integral is well-defined.

The first such restriction is that   be supported on  : that is,  . The Paley–Wiener theorem now asserts the following:[3] The holomorphic Fourier transform of  , defined by

 

for   in the upper half-plane is a holomorphic function. Moreover, by Plancherel's theorem, one has

 

and by dominated convergence,

 

Conversely, if   is a holomorphic function in the upper half-plane satisfying

 

then there exists   such that   is the holomorphic Fourier transform of  .

In abstract terms, this version of the theorem explicitly describes the Hardy space  . The theorem states that

 

This is a very useful result as it enables one to pass to the Fourier transform of a function in the Hardy space and perform calculations in the easily understood space   of square-integrable functions supported on the positive axis.

By imposing the alternative restriction that   be compactly supported, one obtains another Paley–Wiener theorem.[4] Suppose that   is supported in  , so that  . Then the holomorphic Fourier transform

 

is an entire function of exponential type  , meaning that there is a constant   such that

 

and moreover,   is square-integrable over horizontal lines:

 

Conversely, any entire function of exponential type   which is square-integrable over horizontal lines is the holomorphic Fourier transform of an   function supported in  .

Schwartz's Paley–Wiener theorem

edit

Schwartz's Paley–Wiener theorem asserts that the Fourier transform of a distribution of compact support on   is an entire function on   and gives estimates on its growth at infinity. It was proven by Laurent Schwartz (1952). The formulation presented here is from Hörmander (1976)[full citation needed].

Generally, the Fourier transform can be defined for any tempered distribution; moreover, any distribution of compact support   is a tempered distribution. If   is a distribution of compact support and   is an infinitely differentiable function, the expression

 

is well defined.

It can be shown that the Fourier transform of   is a function (as opposed to a general tempered distribution) given at the value   by

 

and that this function can be extended to values of   in the complex space  . This extension of the Fourier transform to the complex domain is called the Fourier–Laplace transform.

Schwartz's theorem — An entire function   on   is the Fourier–Laplace transform of a distribution   of compact support if and only if for all  ,

 

for some constants  ,  ,  . The distribution   in fact will be supported in the closed ball of center   and radius  .

Additional growth conditions on the entire function   impose regularity properties on the distribution  . For instance:[5]

Theorem — If for every positive   there is a constant   such that for all  ,

 

then   is an infinitely differentiable function, and vice versa.

Sharper results giving good control over the singular support of   have been formulated by Hörmander (1990). In particular,[6] let   be a convex compact set in   with supporting function  , defined by

 

Then the singular support of   is contained in   if and only if there is a constant   and sequence of constants   such that

 

for  

Notes

edit
  1. ^ Paley & Wiener 1934.
  2. ^ Paley & Wiener 1934, pp. 14–20, 100.
  3. ^ Rudin 1987, Theorem 19.2; Strichartz 1994, Theorem 7.2.4; Yosida 1968, §VI.4
  4. ^ Rudin 1987, Theorem 19.3; Strichartz 1994, Theorem 7.2.1
  5. ^ Strichartz 1994, Theorem 7.2.2; Hörmander 1990, Theorem 7.3.1
  6. ^ Hörmander 1990, Theorem 7.3.8

References

edit
  • Hörmander, L. (1990), The Analysis of Linear Partial Differential Operators I, Springer Verlag.
  • Paley, Raymond E. A. C.; Wiener, Norbert (1934). Fourier Transforms in the Complex Domain. Providence, RI: American Mathematical Soc. ISBN 978-0-8218-1019-4.
  • Rudin, Walter (1987), Real and complex analysis (3rd ed.), New York: McGraw-Hill, ISBN 978-0-07-054234-1, MR 0924157.
  • Schwartz, Laurent (1952), "Transformation de Laplace des distributions", Comm. Sém. Math. Univ. Lund [Medd. Lunds Univ. Mat. Sem.], 1952: 196–206, MR 0052555
  • Strichartz, R. (1994), A Guide to Distribution Theory and Fourier Transforms, CRC Press, ISBN 0-8493-8273-4.
  • Yosida, K. (1968), Functional Analysis, Academic Press.