5-orthoplex

(Redirected from Pentacross)
Regular 5-orthoplex
(pentacross)

Orthogonal projection
inside Petrie polygon
Type Regular 5-polytope
Family orthoplex
Schläfli symbol {3,3,3,4}
{3,3,31,1}
Coxeter-Dynkin diagrams
4-faces 32 {33}
Cells 80 {3,3}
Faces 80 {3}
Edges 40
Vertices 10
Vertex figure
16-cell
Petrie polygon decagon
Coxeter groups BC5, [3,3,3,4]
D5, [32,1,1]
Dual 5-cube
Properties convex, Hanner polytope

In five-dimensional geometry, a 5-orthoplex, or 5-cross polytope, is a five-dimensional polytope with 10 vertices, 40 edges, 80 triangle faces, 80 tetrahedron cells, 32 5-cell 4-faces.

It has two constructed forms, the first being regular with Schläfli symbol {33,4}, and the second with alternately labeled (checkerboarded) facets, with Schläfli symbol {3,3,31,1} or Coxeter symbol 211.

It is a part of an infinite family of polytopes, called cross-polytopes or orthoplexes. The dual polytope is the 5-hypercube or 5-cube.

Alternate names

edit
  • pentacross, derived from combining the family name cross polytope with pente for five (dimensions) in Greek.
  • Triacontaditeron (or triacontakaiditeron) - as a 32-facetted 5-polytope (polyteron).

As a configuration

edit

This configuration matrix represents the 5-orthoplex. The rows and columns correspond to vertices, edges, faces, cells and 4-faces. The diagonal numbers say how many of each element occur in the whole 5-orthoplex. The nondiagonal numbers say how many of the column's element occur in or at the row's element.[1][2]

 

Cartesian coordinates

edit

Cartesian coordinates for the vertices of a 5-orthoplex, centered at the origin are

(±1,0,0,0,0), (0,±1,0,0,0), (0,0,±1,0,0), (0,0,0,±1,0), (0,0,0,0,±1)

Construction

edit

There are three Coxeter groups associated with the 5-orthoplex, one regular, dual of the penteract with the C5 or [4,3,3,3] Coxeter group, and a lower symmetry with two copies of 5-cell facets, alternating, with the D5 or [32,1,1] Coxeter group, and the final one as a dual 5-orthotope, called a 5-fusil which can have a variety of subsymmetries.

Name Coxeter diagram Schläfli symbol Symmetry Order Vertex figure(s)
regular 5-orthoplex           {3,3,3,4} [3,3,3,4] 3840        
Quasiregular 5-orthoplex         {3,3,31,1} [3,3,31,1] 1920      
5-fusil
          {3,3,3,4} [4,3,3,3] 3840        
          {3,3,4}+{} [4,3,3,2] 768        
          {3,4}+{4} [4,3,2,4] 384        
       
          {3,4}+2{} [4,3,2,2] 192        
       
          2{4}+{} [4,2,4,2] 128        
          {4}+3{} [4,2,2,2] 64        
       
          5{} [2,2,2,2] 32        

Other images

edit
orthographic projections
Coxeter plane B5 B4 / D5 B3 / D4 / A2
Graph      
Dihedral symmetry [10] [8] [6]
Coxeter plane B2 A3
Graph    
Dihedral symmetry [4] [4]
 
The perspective projection (3D to 2D) of a stereographic projection (4D to 3D) of the Schlegel diagram (5D to 4D) of the 5-orthoplex. 10 sets of 4 edges form 10 circles in the 4D Schlegel diagram: two of these circles are straight lines in the stereographic projection because they contain the center of projection.
edit
2k1 figures in n dimensions
Space Finite Euclidean Hyperbolic
n 3 4 5 6 7 8 9 10
Coxeter
group
E3=A2A1 E4=A4 E5=D5 E6 E7 E8 E9 =   = E8+ E10 =   = E8++
Coxeter
diagram
                                                                                         
Symmetry [3−1,2,1] [30,2,1] [[31,2,1]] [32,2,1] [33,2,1] [34,2,1] [35,2,1] [36,2,1]
Order 12 120 384 51,840 2,903,040 696,729,600
Graph             - -
Name 2−1,1 201 211 221 231 241 251 261

This polytope is one of 31 uniform 5-polytopes generated from the B5 Coxeter plane, including the regular 5-cube and 5-orthoplex.

B5 polytopes
 
β5
 
t1β5
 
t2γ5
 
t1γ5
 
γ5
 
t0,1β5
 
t0,2β5
 
t1,2β5
 
t0,3β5
 
t1,3γ5
 
t1,2γ5
 
t0,4γ5
 
t0,3γ5
 
t0,2γ5
 
t0,1γ5
 
t0,1,2β5
 
t0,1,3β5
 
t0,2,3β5
 
t1,2,3γ5
 
t0,1,4β5
 
t0,2,4γ5
 
t0,2,3γ5
 
t0,1,4γ5
 
t0,1,3γ5
 
t0,1,2γ5
 
t0,1,2,3β5
 
t0,1,2,4β5
 
t0,1,3,4γ5
 
t0,1,2,4γ5
 
t0,1,2,3γ5
 
t0,1,2,3,4γ5

References

edit
  1. ^ Coxeter, Regular Polytopes, sec 1.8 Configurations
  2. ^ Coxeter, Complex Regular Polytopes, p.117
  • H.S.M. Coxeter:
    • H.S.M. Coxeter, Regular Polytopes, 3rd Edition, Dover New York, 1973
    • Kaleidoscopes: Selected Writings of H.S.M. Coxeter, edited by F. Arthur Sherk, Peter McMullen, Anthony C. Thompson, Asia Ivic Weiss, Wiley-Interscience Publication, 1995, ISBN 978-0-471-01003-6 [1]
      • (Paper 22) H.S.M. Coxeter, Regular and Semi Regular Polytopes I, [Math. Zeit. 46 (1940) 380-407, MR 2,10]
      • (Paper 23) H.S.M. Coxeter, Regular and Semi-Regular Polytopes II, [Math. Zeit. 188 (1985) 559-591]
      • (Paper 24) H.S.M. Coxeter, Regular and Semi-Regular Polytopes III, [Math. Zeit. 200 (1988) 3-45]
  • Norman Johnson Uniform Polytopes, Manuscript (1991)
    • N.W. Johnson: The Theory of Uniform Polytopes and Honeycombs, Ph.D. (1966)
  • Klitzing, Richard. "5D uniform polytopes (polytera) x3o3o3o4o - tac".
edit
Family An Bn I2(p) / Dn E6 / E7 / E8 / F4 / G2 Hn
Regular polygon Triangle Square p-gon Hexagon Pentagon
Uniform polyhedron Tetrahedron OctahedronCube Demicube DodecahedronIcosahedron
Uniform polychoron Pentachoron 16-cellTesseract Demitesseract 24-cell 120-cell600-cell
Uniform 5-polytope 5-simplex 5-orthoplex5-cube 5-demicube
Uniform 6-polytope 6-simplex 6-orthoplex6-cube 6-demicube 122221
Uniform 7-polytope 7-simplex 7-orthoplex7-cube 7-demicube 132231321
Uniform 8-polytope 8-simplex 8-orthoplex8-cube 8-demicube 142241421
Uniform 9-polytope 9-simplex 9-orthoplex9-cube 9-demicube
Uniform 10-polytope 10-simplex 10-orthoplex10-cube 10-demicube
Uniform n-polytope n-simplex n-orthoplexn-cube n-demicube 1k22k1k21 n-pentagonal polytope
Topics: Polytope familiesRegular polytopeList of regular polytopes and compounds