Vote-ratio monotonicity

(Redirected from Population paradox)

Vote-ratio,[1]: Sub.9.6  weight-ratio,[2] or population-ratio monotonicity[3]: Sec.4  is a property of some apportionment methods. It says that if the entitlement for grows at a faster rate than (i.e. grows proportionally more than ), should not lose a seat to .[1]: Sub.9.6  More formally, if the ratio of votes or populations increases, then should not lose a seat while gains a seat. An apportionment method violating this rule may encounter population paradoxes.

A particularly severe variant, where voting for a party causes it to lose seats, is called a no-show paradox. The largest remainders method exhibits both population and no-show paradoxes.[4]: Sub.9.14 

Population-pair monotonicity

edit

Pairwise monotonicity says that if the ratio between the entitlements of two states   increases, then state   should not gain seats at the expense of state  . In other words, a shrinking state should not "steal" a seat from a growing state.

Some earlier apportionment rules, such as Hamilton's method, do not satisfy VRM, and thus exhibit the population paradox. For example, after the 1900 census, Virginia lost a seat to Maine, even though Virginia's population was growing more rapidly.[5]: 231–232 

Strong monotonicity

edit

A stronger variant of population monotonicity, called strong monotonicity requires that, if a state's entitlement (share of the population) increases, then its apportionment should not decrease, regardless of what happens to any other state's entitlement. This variant is extremely strong, however: whenever there are at least 3 states, and the house size is not exactly equal to the number of states, no apportionment method is strongly monotone for a fixed house size.[6]: Thm.4.1  Strong monotonicity failures in divisor methods happen when one state's entitlement increases, causing it to "steal" a seat from another state whose entitlement is unchanged.

However, it is worth noting that the traditional form of the divisor method, which involves using a fixed divisor and allowing the house size to vary, satisfies strong monotonicity in this sense.

Relation to other properties

edit

Balinski and Young proved that an apportionment method is VRM if-and-only-if it is a divisor method.[7]: Thm.4.3 

Palomares, Pukelsheim and Ramirez proved that very apportionment rule that is anonymous, balanced, concordant, homogenous, and coherent is vote-ratio monotone.[citation needed]

Vote-ratio monotonicity implies that, if population moves from state   to state   while the populations of other states do not change, then both   and   must hold.[8]: Sub.9.9 

See also

edit

References

edit
  1. ^ a b Pukelsheim, Friedrich (2017), Pukelsheim, Friedrich (ed.), "Securing System Consistency: Coherence and Paradoxes", Proportional Representation: Apportionment Methods and Their Applications, Cham: Springer International Publishing, pp. 159–183, doi:10.1007/978-3-319-64707-4_9, ISBN 978-3-319-64707-4, retrieved 2021-09-02
  2. ^ Chakraborty, Mithun; Schmidt-Kraepelin, Ulrike; Suksompong, Warut (2021-04-29). "Picking sequences and monotonicity in weighted fair division". Artificial Intelligence. 301: 103578. arXiv:2104.14347. doi:10.1016/j.artint.2021.103578. S2CID 233443832.
  3. ^ Balinski, Michel L.; Young, H. Peyton (1982). Fair Representation: Meeting the Ideal of One Man, One Vote. New Haven: Yale University Press. ISBN 0-300-02724-9.
  4. ^ Pukelsheim, Friedrich (2017), Pukelsheim, Friedrich (ed.), "Securing System Consistency: Coherence and Paradoxes", Proportional Representation: Apportionment Methods and Their Applications, Cham: Springer International Publishing, pp. 159–183, doi:10.1007/978-3-319-64707-4_9, ISBN 978-3-319-64707-4, retrieved 2021-09-02
  5. ^ Stein, James D. (2008). How Math Explains the World: A Guide to the Power of Numbers, from Car Repair to Modern Physics. New York: Smithsonian Books. ISBN 9780061241765.
  6. ^ Balinski, Michel L.; Young, H. Peyton (1982). Fair Representation: Meeting the Ideal of One Man, One Vote. New Haven: Yale University Press. ISBN 0-300-02724-9.
  7. ^ Balinski, Michel L.; Young, H. Peyton (1982). Fair Representation: Meeting the Ideal of One Man, One Vote. New Haven: Yale University Press. ISBN 0-300-02724-9.
  8. ^ Pukelsheim, Friedrich (2017), Pukelsheim, Friedrich (ed.), "Securing System Consistency: Coherence and Paradoxes", Proportional Representation: Apportionment Methods and Their Applications, Cham: Springer International Publishing, pp. 159–183, doi:10.1007/978-3-319-64707-4_9, ISBN 978-3-319-64707-4, retrieved 2021-09-02