Capsule of lens

(Redirected from Posterior capsule)

The lens capsule is a component of the globe of the eye.[1] It is a clear elastic basement membrane similar in composition to other basement membranes in the body. The capsule is a very thick basement membrane[2] and the thickness varies in different areas on the lens surface and with the age of the animal. It is composed of various types of fibers such as collagen IV,[3] laminin, etc.[4][5][6] and these help it stay under constant tension.[7] The capsule is attached to the surrounding eye by numerous suspensory ligaments and in turn suspends the rest of the lens in an appropriate position. As the lens grows throughout life so must the capsule. Due to the shape of the capsule, the lens naturally tends towards a rounder or more globular configuration, a shape it must assume for the eye to focus at a near distance. Tension on the capsule is varied to allow the lens to subtly change shape to allow the eye to focus in a process called accommodation.

Capsule of lens
The upper half of a sagittal section through the front of the eyeball. (Capsule of lens labeled at center right.)
Details
Identifiers
Latincapsula lentis
MeSHD007903
TA98A15.2.05.007
FMA58881
Anatomical terminology
Sheep eye lens capsule with ligaments attached. The capsule is lifting off the lens showing cell fiber ends beneath.
Microscope image of lens capsule in relation to lens cell types

Early in embryonic development the lens capsule is highly vascularized, but later during embryo development becomes avascular and transparent, serving as a diffusion barrier helping to protect the lens. It is permeable to low molecular weight compounds,[8] but restricts the movement of larger things like bacteria, viruses and large colloidal particles.[9] As the capsule contains the lens, it is clinically significant in regard to surgery of the lens. For example, it is used to contain new artificial lenses implanted after cataract surgery.

Anatomy

edit
 
Micrographs and 3D drawing of a "foot" structures on eye lens capsules

The lens capsule is a transparent membrane that surrounds the entire lens. The capsule is thinnest at the posterior pole with approximate thickness of 3.5μm. Average thickness at the equator is 7μm.[7][10] Anterior pole thickness increases with age from 11-15μm.[clarification needed] The thickest portion is the annular region surrounding the anterior pole. This will also increase with age (from 13.5-16μm).[clarification needed][11] The ligaments suspending the lens form attachments in the equatorial area and more so just to the front and back of the equator.[12] There are tens of thousands of these ligaments in a mouse lens and for the most part they appear to connect directly to the lens capsule.[13] As the lens grows throughout the life of most vertebrates, the capsule is required to grow as well.[14] As shown in the accompanying micrographs and diagrams, equatorial cells can have periodic cellular processes penetrating the capsule.

 
A thin section showing two feet penetrating into the lens capsule. The capsule appears just under 10 microns thick in this micrograph though the apparent thickness will vary with the angle of section cut so the actual thickness may be less. Large numbers of small vesicles can also be seen
 
One of the feet and higher magnification. Thin pale fibres can just be seen within the cytoplasm
 
Structure on the outside surface of eye lens capsule at equator showing the fused cells and vesicles associated with it

The structures in the images are consistent with the laying down of new capsular material required for growth.[15] Even though the capsule is a highly elastic structure,[16] it contains no elastic fibers. Elasticity is because of the thick lamellar arrangement of the collagen fibers.[11]

Function

edit

The capsule helps give the lens its more spherical shape in aquatic vertebrates such as fish and more ellipsoidal shape in land based vertebrates such as sheep. In humans the lens ellipsoid becomes more flattened with age.[17] The capsule is the basement membrane for the epithelial cells at the front of the lens and the rapidly growing more flexible fiber cells of the back of the lens and below the epithelium at the front. Without the capsule substrate forming a tense support, these cells lose their form as in the picture of a decapsulated sheep lens.

 
A sheep lens with the capsule stripped off. The classic lens shape is practically lost without the support of the capsule.

Accommodation

edit

Normally, when ciliary muscles are in a relaxed state, the zonules will pull the capsule. Due to this zonular tension anterior lens surface is flatter resulting in more distant objects being in focus. When ciliary muscles contract, the zonular tension will reduce allowing lens to assume more spherical shape. This shape change increases the focusing power of the eye allowing closer objects to come into focus. The process of changing the lens's focusing power to see closer objects more clearly is known as accommodation.

Embryology

edit
 
Lens embryogenisis

The lens vesicle is developed from surface ectoderm.[18] It will separate from surface ectoderm at approximately day 33 in a human and only 3 days for a chicken. Lens capsule developed from basal lamina of lens vesicle will cover early lens fibers. Capsule is evident at 5 weeks of human gestation and begins its role in protecting and supporting the lens interior.[11]

Lens protection

edit

Early embryologic development of the lens capsule gives the lens material an immune privilege.[19] It will also help protect the lens from viruses, bacteria and parasites.[20][11][21]

Vascular lens capsule

edit

During fetal development vascular lens capsule (tunica vasculosa lentis) develops from the mesenchyme that surrounds the lens.[18] It receives arterial blood supply from the hyaloid artery.[9] This blood supply slowly regresses and the vascular capsule disappears before birth. The disappearance of the anterior vascular capsule of the lens is useful in estimating the gestational age.[22] While the vascularization disappears during gestation, the micrographs in this article show cells still active on the lens exterior after vascular regression. These cells may be the avascular portion of the original mesenchyme that surrounded the lens.

Clinical significance

edit

In intra-capsular cataract extraction (ICCE), the whole lens including the anterior part of the capsule is removed. During more common extra capsular cataract surgery procedures like micro incision cataract surgery, phacoemulsification etc., the clouded lens is removed through an opening made in the anterior lens capsule.[23] The intraocular lens is then inserted into the lens capsule which is capable of rapid healing.[24] The best place for intraocular lens implantation is within the capsular bag.[25]

Posterior capsular opacification and posterior capsule rupture are common complications of cataract surgery.[26]

See also

edit

References

edit
  1. ^ "Mode of Discovering the Proper Capsule of the Crystalline Lens". The London Medical and Physical Journal. 34 (202): 453–454. December 1815. PMC 5594332. PMID 30493699.
  2. ^ Yanoff, Myron. (2009). "Lens". Ocular pathology. Sassani, Joseph W. (6th ed.). Edinburgh: Mosby/Elsevier. ISBN 978-0-323-04232-1. OCLC 294998596.
  3. ^ DISCHE, Z; ZELMENIS, G (April 1965). "The Content and Structural Characteristics of the Collagenous Protein of Rabbit Lens Capsules at Different Ages". Investigative Ophthalmology. 4: 174–80. PMID 14283010.
  4. ^ Mohan, PS; Spiro, RG (25 March 1986). "Macromolecular organization of basement membranes. Characterization and comparison of glomerular basement membrane and lens capsule components by immunochemical and lectin affinity procedures". The Journal of Biological Chemistry. 261 (9): 4328–36. doi:10.1016/S0021-9258(17)35665-X. PMID 3512568.
  5. ^ Halfter, W; Candiello, J; Hu, H; Zhang, P; Schreiber, E; Balasubramani, M (January 2013). "Protein composition and biomechanical properties of in vivo-derived basement membranes". Cell Adhesion & Migration. 7 (1): 64–71. doi:10.4161/cam.22479. PMC 3544788. PMID 23154404.
  6. ^ Danysh, BP; Duncan, MK (February 2009). "The lens capsule". Experimental Eye Research. 88 (2): 151–64. doi:10.1016/j.exer.2008.08.002. PMC 2674021. PMID 18773892.
  7. ^ a b Fisher, RF (March 1969). "Elastic constants of the human lens capsule". The Journal of Physiology. 201 (1): 1–19. doi:10.1113/jphysiol.1969.sp008739. PMC 1351628. PMID 5773553.
  8. ^ Kastner, Christian; Löbler, Marian; Sternberg, Katrin; Reske, Thomas; Stachs, Oliver; Guthoff, Rudolf; Schmitz, Klaus-Peter (October 2013). "Permeability of the Anterior Lens Capsule for Large Molecules and Small Drugs". Current Eye Research. 38 (10): 1057–1063. doi:10.3109/02713683.2013.803288. PMID 23885713. S2CID 21090856.
  9. ^ a b Snell, Richard S. (2012). "Development of the Eye and the Ocular Appendages". Clinical anatomy of the eye. Lemp, Michael A. (2nd ed.). Malden, MA, USA: Blackwell Science. ISBN 978-0-632-04344-6. OCLC 37580703.
  10. ^ Salemann, M (1912). The Anatomy and Biology of the Human Eyeball in the Normal State. Chicago: University of Chicago Press. p. 165.
  11. ^ a b c d Clinical anatomy and physiology of the visual system (3rd ed.). Elsevier/Butterworth-Heinemann. 2012. ISBN 978-1-4377-1926-0.
  12. ^ Shi, Yanrong; Tu, Yidong; De Maria, Alicia; Mecham, Robert P.; Bassnett, Steven (1 April 2013). "Development, Composition, and Structural Arrangements of the Ciliary Zonule of the Mouse". Investigative Ophthalmology & Visual Science. 54 (4): 2504–2515. doi:10.1167/iovs.13-11619. PMC 3621578. PMID 23493297.
  13. ^ Bassnett, Steven (May 2021). "Zinn's zonule". Progress in Retinal and Eye Research. 82: 100902. doi:10.1016/j.preteyeres.2020.100902. PMC 8139560. PMID 32980533.
  14. ^ The eye : basic sciences in practice. London: W.B. Saunders. 1996. ISBN 0-7020-1790-6.
  15. ^ Gruijters, Wouterus TM (1 July 2024). "A new eye lens structure associated with capsule/basement membrane growth". MicroPublication Biology. doi:10.17912/micropub.biology.000828. PMC 11320119. PMID 39139582.
  16. ^ Bowman, W (1849). Lectures on the Parts Concerned in the Operations on the Eye and on the Structure of the Retina. Londan: Longmans.
  17. ^ "Lens Capsule". American Academy of Ophthalmology. 1 October 2019.
  18. ^ a b Young, P (January 1858). "On the Development of the Eye in the Chick". The British and Foreign Medico-chirurgical Review. 21 (41): 187–204. PMC 5186056. PMID 30164458.
  19. ^ Lang, RA (January 1997). "Apoptosis in mammalian eye development: lens morphogenesis, vascular regression and immune privilege". Cell Death and Differentiation. 4 (1): 12–20. doi:10.1038/sj.cdd.4400211. PMID 16465205. S2CID 10466397.
  20. ^ Karkinen-Jääskeläinen, M; Saxén, L; Vaheri, A; Leinikki, P (1 June 1975). "Rubella cataract in vitro: Sensitive period of the developing human lens". The Journal of Experimental Medicine. 141 (6): 1238–48. doi:10.1084/jem.141.6.1238. PMC 2189850. PMID 1092795.
  21. ^ Tham, MH; Hall, IB (July 1971). "Impacted microfilaria in the lens capsule". The British Journal of Ophthalmology. 55 (7): 484–6. doi:10.1136/bjo.55.7.484. PMC 1208424. PMID 5557527.
  22. ^ Hittner, H. M.; Hirsch, N. J.; Rudolph, A. J. (September 1977). "Assessment of gestational age by examination of the anterior vascular capsule of the lens". The Journal of Pediatrics. 91 (3): 455–458. doi:10.1016/s0022-3476(77)81324-3. ISSN 0022-3476. PMID 894419.
  23. ^ Fitzgerald, CE (22 November 1879). "Peripheral Division of the Capsule of the Lens". British Medical Journal. 2 (986): 811–2. doi:10.1136/bmj.2.986.811. PMC 2240914. PMID 20749364.
  24. ^ McDonnell, PJ; Patel, A; Green, WR (September 1985). "Comparison of intracapsular and extracapsular cataract surgery. Histopathologic study of eyes obtained postmortem". Ophthalmology. 92 (9): 1208–25. doi:10.1016/s0161-6420(85)33875-7. PMID 4058884.
  25. ^ Mehta, Rajvi; Aref, Ahmad A (27 November 2019). "Intraocular Lens Implantation In The Ciliary Sulcus: Challenges And Risks". Clinical Ophthalmology. 13: 2317–2323. doi:10.2147/OPTH.S205148. ISSN 1177-5467. PMC 6885568. PMID 31819356.
  26. ^ John F, Salmon (13 December 2019). Kanski's clinical ophthalmology : a systematic approach (9th ed.). Elsevier. ISBN 978-0-7020-7711-1.