Modified Richardson iteration

(Redirected from Richardson iteration)

Modified Richardson iteration is an iterative method for solving a system of linear equations. Richardson iteration was proposed by Lewis Fry Richardson in his work dated 1910. It is similar to the Jacobi and Gauss–Seidel method.

We seek the solution to a set of linear equations, expressed in matrix terms as

The Richardson iteration is

where is a scalar parameter that has to be chosen such that the sequence converges.

It is easy to see that the method has the correct fixed points, because if it converges, then and has to approximate a solution of .

Convergence

edit

Subtracting the exact solution  , and introducing the notation for the error  , we get the equality for the errors

 

Thus,

 

for any vector norm and the corresponding induced matrix norm. Thus, if  , the method converges.

Suppose that   is symmetric positive definite and that   are the eigenvalues of  . The error converges to   if   for all eigenvalues  . If, e.g., all eigenvalues are positive, this can be guaranteed if   is chosen such that  . The optimal choice, minimizing all  , is  , which gives the simplest Chebyshev iteration. This optimal choice yields a spectral radius of

 

where   is the condition number.

If there are both positive and negative eigenvalues, the method will diverge for any   if the initial error   has nonzero components in the corresponding eigenvectors.

Equivalence to gradient descent

edit

Consider minimizing the function  . Since this is a convex function, a sufficient condition for optimality is that the gradient is zero ( ) which gives rise to the equation

 

Define   and  . Because of the form of A, it is a positive semi-definite matrix, so it has no negative eigenvalues.

A step of gradient descent is

 

which is equivalent to the Richardson iteration by making  .

See also

edit

References

edit
  • Richardson, L.F. (1910). "The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam". Philosophical Transactions of the Royal Society A. 210: 307–357. doi:10.1098/rsta.1911.0009. JSTOR 90994.
  • Lebedev, Vyacheslav Ivanovich (2001) [1994], "Chebyshev iteration method", in Michiel Hazewinkel (ed.), Encyclopedia of Mathematics, EMS Press, ISBN 1-4020-0609-8, retrieved 2010-05-25